Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)
\(N=\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)
Ta có \(10^8-7>10^7-8\) \(=>\frac{13}{10^8-7}< \frac{13}{10^7-8}\) \(=>M< N\)
Vậy M<N
dễ thôi
A=\(\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)
B=\(\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)
\(10^8>10^7nen10^8-7>10^7-8\)
=> \(\frac{13}{10^8-7}< \frac{13}{10^7-8}hayB< A\)
\(A=\frac{10^9+5}{10^9-2}\)
\(=\frac{10^9-2}{10^9-2}+\frac{7}{10^9-2}\)
\(=1+\frac{7}{10^9-2}\)
\(B=\frac{10^9}{10^9-7}\)
\(=\frac{10^9-7}{10^9-7}+\frac{7}{10^9-7}\)
\(=1+\frac{7}{10^9-7}\)
Vì \(7\over10^9-5\)<\(7\over10^9-7\) nên A<B
\(A=\frac{10^7+5}{10^7-8}=\frac{\left(10^7-8\right)+13}{10^7-8}=1+\frac{13}{10^7-8}\)
\(B=\frac{10^8+6}{10^8-7}=\frac{\left(10^8-7\right)+13}{10^8-7}=1+\frac{13}{10^8-7}\)
Vì \(10^7-8< 10^8-7\) nên \(\frac{13}{10^7-8}>\frac{13}{10^8-7}\)
\(\Rightarrow1+\frac{13}{10^7-8}>1+\frac{13}{10^8-7}\) do đó \(A>B\)
\(\frac{5}{8}=0,625;\frac{7}{10}=0,7\)
vì \(0,625< 0,7\)NÊN \(\frac{5}{8}< \frac{7}{10}\)
VẬY \(\frac{5}{8}< \frac{7}{10}\)
TK MN NHÉ
Quy đồng, ta có:
\(\frac{5}{8}=\frac{25}{40}\)
\(\frac{7}{10}=\frac{28}{40}\)
Vì \(25< 28\)nên \(\frac{25}{40}< \frac{28}{40}\)
\(\Rightarrow\frac{5}{8}< \frac{7}{10}\)