Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2001/2002=1-1/2002
2002/2003=1-1/2003
vi 1/2003<1/2002 nen 2001/2002<2002/2003
Ta có: 2003 x 2001 < 2002 x 2002
=> \(\frac{2001}{2002}\)<\(\frac{2002}{2003}\)
So sánh hai biểu thức A và B biết rằng:
[Math Processing Error]A=20002001+20012002
[Math Processing Error]B=2000+20012001+2002
Hướng dẫn làm bài:
Ta có: [Math Processing Error]20002001>20002001+2002 (cùng tử, phân số nào có mẫu lớn hơn thì nhỏ hơn)
[Math Processing Error]20012002>20012001+2002 (cùng tử, phân số nào có mẫu lớn hơn thì nhỏ hơn)
Cộng vế với vế ta được:
[Math Processing Error]20002001+20012002>20002001+2002+20012001+2002
Vậy A > B
A=2001/2002+2002/2003
B=2001/2002+2003+2002/2002+2003
(tớ tách B ra đấy)
mà 2001//2002+2002/2003>2001/2002+2003+ 202/2002+2003
A>B
\(A=\dfrac{10^{2001}+1}{10^{2002}+1}\Leftrightarrow10A=\dfrac{10^{2002}+10}{10^{2002}+1}=1+\dfrac{9}{10^{2002}+1}\)
\(B=\dfrac{10^{2002}+1}{10^{2003}+1}\Leftrightarrow10B=\dfrac{10^{2003}+10}{10^{2003}+1}=1+\dfrac{9}{10^{2003}+1}\)
Từ đó suy ra \(10A>10B\) hay \(A>B\)
Áp dụng bất đẳng thức :\(\dfrac{a}{b}< 1\Leftrightarrow\dfrac{a}{b}< \dfrac{a+m}{b+m}\) ta có :
\(B=\dfrac{10^{2002}+1}{10^{2003}+1}< \dfrac{10^{2002}+1+9}{10^{2003}+1+9}=\dfrac{10^{2002}+10}{10^{2003}+10}=\dfrac{10\left(10^{2001}+1\right)}{10\left(10^{2002}+1\right)}=\dfrac{10^{2001}+1}{20^{2002}+1}=A\)
\(\Leftrightarrow A>B\)
Cách 1:\(\frac{2001}{2002}=1-\frac{1}{2002}\)
\(\frac{2002}{2003}=1-\frac{1}{2003}\)
Vì \(\frac{1}{2002}>\frac{1}{2003}\) nên \(\frac{2001}{2002}<\frac{2002}{2003}\)
Cách 2:Ta có:\(\frac{2001}{2002}<1\)
=>\(\frac{2001}{2002}<\frac{2001+1}{2002+1}=\frac{2002}{2003}\)
Vậy \(\frac{2001}{2002}<\frac{2002}{2003}\)
ta có \(\frac{2000+2002}{2001+2003}\)= \(\frac{2000}{2001+2003}\)+ \(\frac{2002}{2001+2003}\)=\(\frac{2000}{4004}\)+\(\frac{2002}{4004}\)
ta có \(\frac{2000}{2001}\)>\(\frac{2000}{4004}\) và \(\frac{2002}{2003}\)> \(\frac{2002}{4004}\)
nên \(\frac{2000}{2001}\)+\(\frac{2002}{2003}\)>\(\frac{2000}{4004}\)+\(\frac{2002}{4004}\)
vậy \(\frac{2000}{2001}\)+\(\frac{2002}{2003}\)>\(\frac{2000+2002}{2001+2003}\)
\(\frac{2000+2002}{2001+2003}=\frac{2000}{2001+2003}+\frac{2002}{2001+2003}< \frac{2000}{2001}+\frac{2002}{2003}\)
Vì \(A=\dfrac{2000}{2001}+\dfrac{2001}{2002}>\dfrac{2000}{2002}+\dfrac{2001}{2002}\)
\(=\dfrac{2000+2001}{2002}>\dfrac{2000+2001}{2001+2002}\)
nên \(A>B\)
Ta có : \(\dfrac{2000}{2001}>\dfrac{2000}{2001+2002}\)
\(\dfrac{2001}{2002}>\dfrac{2001}{2001+2002}\)
\(\Rightarrow\) \(\dfrac{2000}{2001}+\dfrac{2001}{2002}>\dfrac{2000+2001}{2001+2002}\)
Vậy A > B
Ta có:
\(\dfrac{2001}{2002}< 1\)
\(1< \dfrac{2021}{2003}\)
\(\Rightarrow\dfrac{2001}{2002}< \dfrac{2021}{2003}\)
#Đang Bận Thở
a) 2001 : 2002
b) 2021 : 2003