K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2018

Giải:

Ta có:

\(P=\dfrac{2016}{2017}+\dfrac{2017}{2018}+\dfrac{2018}{2019}\)

\(Q=\dfrac{2016}{2017}+\dfrac{2017}{2018}+\dfrac{2018}{2019}\)

\(\left\{{}\begin{matrix}\dfrac{2016}{2017}=\dfrac{2016}{2017}\\\dfrac{2017}{2018}=\dfrac{2017}{2018}\\\dfrac{2018}{2019}=\dfrac{2018}{2019}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{2016}{2017}+\dfrac{2017}{2018}+\dfrac{2018}{2019}=\dfrac{2016}{2017}+\dfrac{2017}{2018}+\dfrac{2018}{2019}\)

Hay \(P=Q\)

Vậy ...

22 tháng 5 2018

bạn lm sai r

14 tháng 4 2019

Đặt \(\frac{2016}{2017}\)+\(\frac{2017}{2018}\)+\(\frac{2018}{2019}\)+\(\frac{2019}{2016}\) là A

A=1-\(\frac{1}{2017}\)+1-\(\frac{1}{2018}\)+1-\(\frac{1}{2019}\)+1+\(\frac{3}{2016}\)

A=4-(\(\frac{1}{2017}\)+\(\frac{1}{2018}\)+\(\frac{1}{2019}\)-\(\frac{3}{2016}\)) Do \(\frac{1}{2017}\)+\(\frac{1}{2018}\)+\(\frac{1}{2019}\)-\(\frac{3}{2016}\)<0 =>A>4
6 tháng 8 2017

Ta có : \(\dfrac{2017+2018}{2018+2019}=\dfrac{2017}{2018+2019}+\dfrac{2018}{2018+2019}\)

Rõ ràng ta thấy : \(\dfrac{2017}{2018}>\dfrac{2017}{2018+2019}\) (1)

\(\dfrac{2018}{2019}>\dfrac{2018}{2018+2019}\) (2)

Từ (1)(2), suy ra :

\(\dfrac{2017}{2018}+\dfrac{2018}{2019}>\dfrac{2017+2018}{2018+2019}\)

Vậy ......................

~ Học tốt ~

6 tháng 8 2017

Ta có : \(\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}=\left(1-\dfrac{1}{2018}\right)+\left(1-\dfrac{1}{2019}\right)+\left(1-\dfrac{1}{2020}\right)\)\(=\left(1+1+1\right)-\left(\dfrac{1}{2018}+\dfrac{1}{2019}+\dfrac{1}{2020}\right)\)

\(=3+\left(\dfrac{1}{2018}+\dfrac{1}{2019}+\dfrac{1}{2020}\right)< 3\)

Vậy \(\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}< 3\)

18 tháng 4 2017

a, Ta có: \(\dfrac{2016}{2017+2018}< \dfrac{2016}{2017}\)

\(\dfrac{2017}{2017+2018}< \dfrac{2017}{2018}\)

\(\Rightarrow A=\dfrac{2016+2017}{2017+2018}< B=\dfrac{2016}{2017}+\dfrac{2017}{2018}\)

Vậy A < B

b, Ta có: \(\dfrac{2017}{2016+2017}< \dfrac{2017}{2016}\)

\(\dfrac{2018}{2016+2017}< \dfrac{2018}{2017}\)

\(\Rightarrow M=\dfrac{2017+2018}{2016+2017}< N=\dfrac{2017}{2016}+\dfrac{2018}{2017}\)

Vậy M < N

8 tháng 9 2018

Ta có: \(B=\dfrac{2017+2018+2019}{2018+2019+2020}=\dfrac{2017}{2018+2019+2020}+\dfrac{2018}{2018+2019+2020}+\dfrac{2019}{2018+2019+2020}\)

\(\dfrac{2017}{2018}>\dfrac{2017}{2018+2019+2020}\)

\(\dfrac{2018}{2019}>\dfrac{2018}{2018+2019+2020}\)

\(\dfrac{2019}{2020}>\dfrac{2019}{2018+2019+2020}\)

\(\Rightarrow\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}>\dfrac{2017}{2018+2019+2020}+\dfrac{2018}{2018+2019+2020}+\dfrac{2019}{2018+2919+2020}\)

\(\Rightarrow A>B.\)

Vậy \(A>B.\)

8 tháng 8 2017

Ta có :

\(\dfrac{2017+2018}{2018+2019}=\dfrac{2017}{2018+2019}+\dfrac{2018}{2018+2019}\)

Ta thấy :

\(\dfrac{2017}{2018}>\dfrac{2017}{2018+2019}\left(1\right)\)

\(\dfrac{2018}{2019}>\dfrac{2018}{2018+2019}\left(2\right)\)

từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{2017}{2018}+\dfrac{2018}{2019}>\dfrac{2017+2018}{2018+2019}\)

30 tháng 8 2017

Ta có: \(\dfrac{2017}{2018}>\dfrac{2017}{2018+2019}\)

\(\dfrac{2018}{2019}>\dfrac{2018}{2018+2019}\)

=> \(\dfrac{2017}{2018}+\dfrac{2018}{2019}>\dfrac{2017+2018}{2018+2019}\)

=> A > B

30 tháng 8 2017

Ta có :

\(B=\dfrac{2017+2018}{2018+2019}=\dfrac{2017}{2018+2019}+\dfrac{2018}{2018+2019}\)

Ta thấy :

\(\dfrac{2017}{2018}>\dfrac{2017}{2018+2019}\left(1\right)\)

\(\dfrac{2018}{2019}>\dfrac{2018}{2018+2019}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow A>B\)

18 tháng 3 2018

\(A=\dfrac{\dfrac{1}{2017}+\dfrac{2}{2016}+\dfrac{3}{2015}+...+\dfrac{2016}{2}+\dfrac{2017}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\)

\(A=\dfrac{\left(\dfrac{1}{2017}+1\right)+\left(\dfrac{2}{2016}+1\right)+\left(\dfrac{3}{2015}+1\right)+...+\left(\dfrac{2016}{2}+1\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\)

\(A=\dfrac{\dfrac{2018}{2017}+\dfrac{2018}{2016}+\dfrac{2018}{2015}+...+\dfrac{2018}{2}+\dfrac{2018}{2018}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\)

\(A=\dfrac{2018\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}=2018\)

11 tháng 9 2018

\(\dfrac{x-1}{2019}+\dfrac{x-2}{2018}=\dfrac{x-3}{2017}+\dfrac{x-4}{2016}\)

\(\Leftrightarrow\left(\dfrac{x-1}{2019}-1\right)+\left(\dfrac{x-2}{2018}-1\right)=\left(\dfrac{x-3}{2017}-1\right)+\left(\dfrac{x-4}{2016}-1\right)\)

\(\Leftrightarrow\dfrac{x-2020}{2019}+\dfrac{x-2020}{2018}-\dfrac{x-2020}{2017}-\dfrac{x-2010}{2016}=0\)

\(\Leftrightarrow\left(x-2020\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2016}\right)=0\)

\(\Rightarrow x-2020=0\Leftrightarrow x=2020\)

vậy.......