\(A=\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{79}+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
16 tháng 8 2018

Lời giải:

Ta thấy:

\(A-B=\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+..+\frac{1}{\sqrt{79}+\sqrt{80}}-\left(\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{4}+\sqrt{5}}+...+\frac{1}{\sqrt{80}+\sqrt{81}}\right)\)

\(=\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{5}+\sqrt{6}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}-\frac{1}{\sqrt{80}+\sqrt{81}}\)

\(> \frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{77}+\sqrt{78}}>0\)

\(\Rightarrow A>B\)

AH
Akai Haruma
Giáo viên
23 tháng 7 2018

Lời giải:

Đặt biểu thức đã cho là $A$

Ta có:

\(\frac{1}{1+\sqrt{2}}+\frac{1}{1+\sqrt{2}}> \frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}\)

\(\Rightarrow \frac{1}{1+\sqrt{2}}> \frac{1}{2}\left(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}\right)\)

Hoàn toàn TT: \(\frac{1}{\sqrt{3}+\sqrt{4}}> \frac{1}{2}\left(\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}\right)\)

.......

\(\frac{1}{\sqrt{79}+\sqrt{80}}> \frac{1}{2}\left(\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{80}+\sqrt{81}}\right)\)

Cộng các bđt trên lại với nhau:

\(\Rightarrow A> \frac{1}{2}\left(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{80}+\sqrt{81}}\right)\)

\(A> \frac{1}{2}\left(\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+\frac{\sqrt{4}-\sqrt{3}}{4-3}+...+\frac{\sqrt{81}-\sqrt{80}}{81-80}\right)\) (liên hợp)

\(A> \frac{1}{2}> (\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{81}-\sqrt{80})\)

\(A> \frac{1}{2}(\sqrt{81}-1)=4\) (đpcm)

18 tháng 6 2017

C = \(\dfrac{2\sqrt{4-\sqrt{5+\sqrt{21+\sqrt{80}}}}}{\sqrt{10}-\sqrt{2}}\)

C = \(\dfrac{2\sqrt{4-\sqrt{5+\sqrt{\left(\sqrt{20}+1\right)^2}}}}{\sqrt{10}-\sqrt{2}}\)

C = \(\dfrac{2\sqrt{4-\sqrt{6+\sqrt{20}}}}{\sqrt{10}-\sqrt{2}}\) = \(\dfrac{2\sqrt{4-\sqrt{\left(\sqrt{5}+1\right)^2}}}{\sqrt{10}-\sqrt{2}}\)

C = \(\dfrac{2\sqrt{3-\sqrt{5}}}{\sqrt{10}-\sqrt{2}}\) = \(\dfrac{2\sqrt{3-\sqrt{5}}\left(\sqrt{10}+\sqrt{2}\right)}{10-2}\)

C = \(\dfrac{2\sqrt{30-10\sqrt{5}}+2\sqrt{6-2\sqrt{5}}}{8}\)

C = \(\dfrac{2\sqrt{\left(5-\sqrt{5}\right)^2}+2\sqrt{\left(\sqrt{5}-1\right)^2}}{8}\)

C = \(\dfrac{2\left(5-\sqrt{5}\right)+2\left(\sqrt{5}-1\right)}{8}\)

C = \(\dfrac{10-2\sqrt{5}+2\sqrt{5}-2}{8}\) = \(\dfrac{8}{8}\) = \(1\)

18 tháng 6 2017

D = \(\sqrt{94-42\sqrt{5}}-\sqrt{94+42\sqrt{5}}\)

D = \(\sqrt{\left(7-3\sqrt{5}\right)^2}-\sqrt{\left(7+3\sqrt{5}\right)^2}\)

D = \(7-3\sqrt{5}-\left(7+3\sqrt{5}\right)\) = \(7-3\sqrt{5}-7-3\sqrt{5}\)

D = \(-6\sqrt{5}\)

A = \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

A = \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

A = \(\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\) = \(\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

A = \(\sqrt{\sqrt{5}-\sqrt{5}+1}\) = \(\sqrt{1}=1\)

AH
Akai Haruma
Giáo viên
20 tháng 3 2019

Lời giải:

\(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}\)

\(2A=\frac{2}{\sqrt{1}+\sqrt{2}}+\frac{2}{\sqrt{3}+\sqrt{4}}+...+\frac{2}{\sqrt{79}+\sqrt{80}}\)

\(>\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}+....+\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{80}+\sqrt{81}}\)

\(2A>\frac{(\sqrt{2}-\sqrt{1})(\sqrt{2}+\sqrt{1})}{\sqrt{1}+\sqrt{2}}+\frac{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})}{\sqrt{2}+\sqrt{3}}+....+\frac{(\sqrt{80}-\sqrt{79})(\sqrt{80}+\sqrt{79})}{\sqrt{79}+\sqrt{80}}+\frac{(\sqrt{81}-\sqrt{80})(\sqrt{81}+\sqrt{80})}{\sqrt{80}+\sqrt{81}}\)

\(2A>(\sqrt{2}-\sqrt{1})+(\sqrt{3}-\sqrt{2})+...+(\sqrt{80}-\sqrt{79})+(\sqrt{81}-\sqrt{80})\)

\(2A>\sqrt{81}-\sqrt{1}=8\)

\(A>4\) (đpcm)

6 tháng 8 2018

a) \(2\sqrt{20}-\sqrt{50}+3\sqrt{80}-\sqrt{320}=2\sqrt{2^2.5}-\sqrt{5^2.2}+3\sqrt{4^2.5}-\sqrt{8^2.5}\\ =4\sqrt{5}-5\sqrt{2}+12\sqrt{5}-8\sqrt{5}=8\sqrt{5}-5\sqrt{2}\)

b) \(\sqrt{32}-\sqrt{50}+\sqrt{18}=\sqrt{4^2.2}-\sqrt{5^2.2}+\sqrt{3^2.2}=4\sqrt{2}-5\sqrt{2}+3\sqrt{2}=2\sqrt{2}\)

c) \(3\sqrt{3}+4\sqrt{2}-5\sqrt{27}=3\sqrt{3}+4\sqrt{2}-5\sqrt{3^2.3}=3\sqrt{3}+4\sqrt{2}-15\sqrt{3}=4\sqrt{2}-12\sqrt{3}\)

d) \(\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}+1}=\dfrac{\sqrt{3}\left(\sqrt{\sqrt{3}+1}+1\right)-\sqrt{3}\left(\sqrt{\sqrt{3}+1}-1\right)}{\left(\sqrt{\sqrt{3}+1}-1\right)\left(\sqrt{\sqrt{3}+1}+1\right)}\\ =\dfrac{\sqrt{3}\left(\sqrt{\sqrt{3}+1}+1-\sqrt{\sqrt{3}+1}+1\right)}{\left(\sqrt{3+1}\right)^2-1^2}\\ =\dfrac{2\sqrt{3}}{\sqrt{3}}=2\)

e)\(\left(2+\dfrac{3+\sqrt{3}}{\sqrt{3}+1}\right)\left(2-\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\right)=2^2-\left(\dfrac{3+\sqrt{3}}{\sqrt{3}+1}\right)^2=4-\left(\dfrac{9+6\sqrt{3}+3}{3+2\sqrt{3}+1}\right)\\ =4-\left(\dfrac{6\left(2+\sqrt{3}\right)}{2\left(2+\sqrt{3}\right)}\right)=4-3=1\)

6 tháng 8 2018

b) \(\sqrt{32}-\sqrt{50}+\sqrt{18}=4\sqrt{2}-5\sqrt{2}+3\sqrt{2}=\left(4-5+3\right)\sqrt{2}=2\sqrt{2}\)

10 tháng 7 2017

bạn nên tự nghiên cứu rồi giải đi chứ bạn đưa 1 loạt thế thì ai rảnh mà giải, với lại cứ bài gì không biết chưa chịu suy nghĩ đã hỏi rồi thì tiến bộ sao được, đúng không

23 tháng 6 2017

(bài 1) a) \(\dfrac{1}{5+2\sqrt{6}}-\dfrac{1}{5-2\sqrt{6}}\) = \(\dfrac{5-2\sqrt{6}-5-2\sqrt{6}}{25-24}\)

= \(\dfrac{-4\sqrt{6}}{1}\) = \(-4\sqrt{6}\)

b) \(\sqrt{6+2\sqrt{5}}-\dfrac{\sqrt{15}-\sqrt{3}}{\sqrt{3}}\) = \(\sqrt{\left(\sqrt{5}+1\right)^2}-\dfrac{\sqrt{3}\left(\sqrt{5}-1\right)}{\sqrt{3}}\)

= \(\left(\sqrt{5}+1\right)-\left(\sqrt{5}-1\right)\) = \(\sqrt{5}+1-\sqrt{5}+1\) = \(2\)

c) \(\dfrac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}:\dfrac{1}{\sqrt{16}}\) = \(\dfrac{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}:\dfrac{1}{\sqrt{16}}\)

= \(\sqrt{6}.\sqrt{16}\) = \(4\sqrt{6}\)

d) \(\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{1+\sqrt{2}}-\dfrac{1}{2-\sqrt{3}}\)

= \(\dfrac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}+\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{1+\sqrt{2}}-\dfrac{1}{2-\sqrt{3}}\)

= \(\sqrt{3}+2+\sqrt{2}-\dfrac{1}{2-\sqrt{3}}\) = \(\dfrac{\left(\sqrt{3}+2+\sqrt{2}\right)\left(2-\sqrt{3}\right)-1}{2-\sqrt{3}}\)

= \(\dfrac{2\sqrt{3}-3+4-2\sqrt{3}+2\sqrt{2}-\sqrt{6}-1}{2-\sqrt{3}}\)

= \(\dfrac{2\sqrt{2}-\sqrt{6}}{2-\sqrt{3}}\) = \(\dfrac{\sqrt{2}\left(2-\sqrt{3}\right)}{2-\sqrt{2}}\) = \(\sqrt{2}\)

e) \(\dfrac{4}{1+\sqrt{3}}-\dfrac{\sqrt{15}+\sqrt{3}}{1+\sqrt{5}}\) = \(\dfrac{4}{1+\sqrt{3}}-\dfrac{\sqrt{3}\left(\sqrt{5}+1\right)}{1+\sqrt{5}}\)

= \(\dfrac{4}{1+\sqrt{3}}-\sqrt{3}\) = \(\dfrac{4-\sqrt{3}-3}{1+\sqrt{3}}\) = \(\dfrac{1-\sqrt{3}}{1+\sqrt{3}}\)

= \(\dfrac{\left(1-\sqrt{3}\right)\left(1-\sqrt{3}\right)}{1-3}\) = \(\dfrac{1-2\sqrt{3}+3}{-2}\) = \(\dfrac{4-2\sqrt{3}}{-2}\)

= \(\dfrac{-2\left(-2+\sqrt{3}\right)}{-2}\) = \(\sqrt{3}-2\)

23 tháng 6 2017

bài 2)

a)\(\dfrac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}:\dfrac{1}{\sqrt{a}+\sqrt{b}}=\dfrac{\left(a+b-2\sqrt{ab}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\)

= \(\dfrac{a\sqrt{a}+a\sqrt{b}+b\sqrt{a}+b\sqrt{b}-2a\sqrt{b}-2b\sqrt{a}}{\sqrt{a}-\sqrt{b}}\)

= \(\dfrac{a\sqrt{a}+-a\sqrt{b}+b\sqrt{b}-b\sqrt{a}}{\sqrt{a}-\sqrt{b}}\) = \(\dfrac{a\left(\sqrt{a}-\sqrt{b}\right)-b\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\)

= \(\dfrac{\left(a-b\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\) = \(a-b\)

b) \(\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right).\left(\dfrac{a-\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\)

= \(\dfrac{2a-2}{4\sqrt{a}}.\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)^2-\sqrt{a}\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)

= \(\dfrac{2a-2}{4\sqrt{a}}.\dfrac{\sqrt{a}\left(a-2\sqrt{a}+1\right)-\sqrt{a}\left(a+2\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)

= \(\dfrac{2a-2}{4\sqrt{a}}.\dfrac{a\sqrt{a}-2a+\sqrt{a}-a\sqrt{a}-2a-\sqrt{a}}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)

= \(\dfrac{2\left(a-1\right)}{4\sqrt{a}}.\dfrac{-4a}{a-1}\) = \(-2\)

12 tháng 3 2019

C/m: \(\dfrac{1}{\sqrt{k}+\sqrt{k+1}}=\dfrac{\sqrt{k+1}-\sqrt{k}}{k+1-k}=\sqrt{k+1}-\sqrt{k}\)\(\left(k\ge1,k\in\text{ℕ}\right)\)

Có: \(\dfrac{1}{\sqrt{k-1}+\sqrt{k}}>\dfrac{1}{\sqrt{k}+\sqrt{k+1}}\)

\(\Rightarrow\dfrac{2}{\sqrt{k-1}+\sqrt{k}}>\dfrac{1}{\sqrt{k}+\sqrt{k+1}}+\dfrac{1}{\sqrt{k-1}+\sqrt{k}}\)\(=\sqrt{k}-\sqrt{k-1}+\sqrt{k+1}-\sqrt{k}=\sqrt{k+1}-\sqrt{k-1}\)

\(\Rightarrow2\left(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{79}+\sqrt{80}}\right)>\sqrt{3}-\sqrt{1}+\sqrt{5}-\sqrt{3}+...+\sqrt{81}=9-1=8\)

\(\Rightarrow\dfrac{1}{\sqrt{1}+\sqrt{2}}+...+\dfrac{1}{\sqrt{79}+\sqrt{80}}>4\)(đpcm).

NV
12 tháng 3 2019

\(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}\)

Xét:

\(B=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{80}+\sqrt{81}}=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{81}-\sqrt{80}\)

\(\Rightarrow B=\sqrt{81}-\sqrt{1}=8\)

Mặt khác, do \(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}< \frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{1}+\sqrt{2}}=\frac{2}{\sqrt{1}+\sqrt{2}}\)

Tương tự: \(\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}< \frac{2}{\sqrt{3}+\sqrt{4}}\) ....

\(\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{80}+\sqrt{81}}< \frac{2}{\sqrt{79}+\sqrt{80}}\)

Cộng vế với vế ta được: \(2A>B=8\Rightarrow A>4\)