Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(12>9\)
\(6\sqrt{3}>4\sqrt{5}\)
Do đó: \(12+6\sqrt{3}>9+4\sqrt{5}\)
\(\Leftrightarrow\sqrt{12+6\sqrt{3}}>\sqrt{9+4\sqrt{5}}\)
a) \(9=6+3=6+\sqrt{9}\)
\(6+2\sqrt{2}=6+\sqrt{8}\)
\(\sqrt{8}< \sqrt{9}\) nên \(6+\sqrt{8}=6+2\sqrt{2}< 6+\sqrt{9}=9\)
b) \(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}=5+\sqrt{24}\)
\(3^2=9=5+4=5+\sqrt{16}\)
\(\sqrt{16}< \sqrt{24}\Rightarrow3^2< \left(\sqrt{2}+\sqrt{3}\right)^2\Rightarrow3< \sqrt{2}+\sqrt{3}\)
c) \(9+4\sqrt{5}=\left(2+\sqrt{5}\right)^2\)
\(16=\left(2+2\right)^2=\left(2+\sqrt{4}\right)^2\)
\(\sqrt{4}< \sqrt{5}\Rightarrow2+\sqrt{4}< 2+\sqrt{5}\Rightarrow\left(2+\sqrt{4}\right)^2=16< \left(2+\sqrt{5}\right)^2=9+4\sqrt{5}\)
d) \(\left(\sqrt{11}-\sqrt{3}\right)^2=14-2\sqrt{33}=14-\sqrt{132}\)
\(2^2=14-10=14-\sqrt{100}\)
\(\sqrt{100}< \sqrt{132}\Leftrightarrow-\sqrt{100}>-\sqrt{132}\Leftrightarrow14-\sqrt{100}>14-\sqrt{132}\)
\(\Rightarrow2>\sqrt{11}-\sqrt{3}\)
9 + 4 5 và 16
So sánh 4 5 và 5
Ta có: 16 > 5 ⇒ 16 > 5 ⇒ 4 > 5
Vì 5 > 0 nên 4. 5 > 5 . 5 ⇒ 4 5 > 5 ⇒ 9 + 4 5 > 5 + 9
Vậy 9 + 4 5 > 16
Ta có:\(4\sqrt{5}-\sqrt{26}=\sqrt{16}.\sqrt{5}-\sqrt{26}\)
\(=\sqrt{80}-\sqrt{26}\)
\(< \sqrt{81}-\sqrt{26}< \sqrt{81}-\sqrt{25}\)
\(=9-5=4\)
Vậy \(4>4\sqrt{5}-\sqrt{26}\)
Có \(\sqrt{8}\). 4 = \(\sqrt{\frac{128}{16}}\).4 > \(\sqrt{\frac{81}{16}}\).4 = 9/4 . 4 =9 = 3.3
<=> \(\frac{\sqrt{8}}{3}\)> 3/4
Bài 6:
a: \(15=\sqrt{225}>\sqrt{200}\)
b: \(27=9\sqrt{9}>9\sqrt{5}\)
c: \(-24=-\sqrt{576}< -\sqrt{540}=-6\sqrt{15}\)
6+2 2 và 9
Ta có: 9 = 6 + 3
So sánh: 2 2 và 3 vì 2 2 > 0 và 3 > 0
Ta có: 2 2 2 = 2 2 . 2 2 =4.2=8
3 2 = 9
Vì 8 < 9 nên : 2 2 2 < 3 2
Vậy 6+2 2 < 9.
\(\sqrt{3}>\sqrt{2}\Rightarrow2\sqrt{2}\cdot\sqrt{3}>4\Rightarrow3+2\sqrt{3}\sqrt{2}+2>9\)
\(\Rightarrow\left(\sqrt{3}+\sqrt{2}\right)^2>3^2\Rightarrow\sqrt{3}+\sqrt{2}>3\Rightarrow\sqrt{3}>3-\sqrt{2}\)
\(\Rightarrow7+\sqrt{3}>10-\sqrt{2}\)
cái kia là căn 9 + 4√5 và căn 12 + 6√3 nha
Ta có: \(12>9\)
\(6\sqrt{3}>4\sqrt{5}\)
Do đó: \(12+6\sqrt{3}>9+4\sqrt{5}\)
\(\Leftrightarrow\sqrt{12+6\sqrt{3}}>\sqrt{9+4\sqrt{5}}\)