K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2017

Ta co: \(M=\frac{2013}{123456789}+\frac{2014}{987654321}=\frac{2013}{123456789}+\frac{2013}{987654321}+\frac{1}{987654321}\)

\(N=\frac{2013}{123456789}+\frac{1}{123456789}+\frac{2013}{987654321}\)

ma \(\frac{1}{987654321}< \frac{1}{123456789}\) nen \(M< N\)

8 tháng 6 2017

\(M=\frac{2013}{123456789}+\frac{2014}{987654321}\)

\(N=\frac{2014}{123456789}+\frac{2013}{987654321}\)

\(M=\frac{2014}{987654321}-\frac{1}{987654321}\)

\(N=\frac{2014}{123456789}-\frac{1}{123456789}\)

Ta thấy \(\frac{1}{123456789}>\frac{1}{987654321}\)

\(\Rightarrow M< N\)

13 tháng 4 2017

a)\(\frac{2013}{2015}< \frac{2014}{2016}\)

b)\(\frac{2013+2014}{2014+2015}< \frac{2013}{2014}+\frac{2014}{2015}\)

14 tháng 4 2019

ta có tính chất \(\frac{a}{b}\)>1 suy ra \(\frac{a.m}{b.m}\).........

30 tháng 11 2014

$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$

$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$

$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$

$\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$

$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}$

28 tháng 2 2015

dễ ợt nhưng éo biết làm thông cảm nha

 

23 tháng 5 2016

mỗi  số hạng trong biểu thức A đều nhỏ hơn 1 mà có 15 số nên tổng A sẽ nhỏ hơn 15

23 tháng 5 2016

ta thay tong tren <1+1+1+1+1+1+1+1+1+1+1+1+1+1+1

hay tong tren be hon 15

20 tháng 3 2017

D=2013+2014/ 2014+2015

D= 2013/2014+2015 + 2014/2014+2015

2013/2014+2015 < 2013/2014

2014/2014+2015 < 2014/2015

suy ra 2013/2014+2015 +2014/2014+2015 < 2013/2014+ 2014/2015

hay D < C ( ĐPCM) 

                  XONG NHA BẠN !@!!!!!!!!!!!!!!!!!!!!chắc chắn đúng lun

11 tháng 6 2018

Bài 1:

Ta có:

\(N=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)

Do \(\hept{\begin{cases}\frac{2017}{2018+2019}< \frac{2017}{2018}\\\frac{2018}{2018+2019}< \frac{2018}{2019}\end{cases}\Rightarrow\frac{2017}{2018+2019}+\frac{2018}{2018+2019}< \frac{2017}{2018}+\frac{2018}{2019}}\)

                                                     \(\Leftrightarrow N< M\)

Vậy \(M>N.\)

Bài 2:

Ta có:

\(A=\frac{2017}{987653421}+\frac{2018}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}\)

\(B=\frac{2018}{987654321}+\frac{2017}{24681357}=\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)

Do \(\hept{\begin{cases}\frac{2017}{987654321}+\frac{2017}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}\\\frac{1}{24681357}>\frac{1}{987654321}\end{cases}}\)

\(\Rightarrow\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}>\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)

                                                                     \(\Leftrightarrow A>B\)

Vậy \(A>B.\)

Bài 3:

\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}=1-\frac{1}{2017}+1-\frac{1}{2018}+1-\frac{1}{2019}+1+\frac{3}{2016}\)

                                                                \(=1+1+1+1-\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}+\frac{3}{2016}\)

                                                                \(=4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)\)

Do \(\hept{\begin{cases}\frac{1}{2017}< \frac{1}{2016}\\\frac{1}{2018}< \frac{1}{2016}\\\frac{1}{2019}< \frac{1}{2016}\end{cases}\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}< \frac{1}{2016}+\frac{1}{2016}+\frac{1}{2016}=\frac{3}{2016}}\)

\(\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\)âm

\(\Rightarrow4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)>4\)

Vậy \(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}>4.\)

Bài 4:

\(\frac{1991.1999}{1995.1995}=\frac{1991.\left(1995+4\right)}{\left(1991+4\right).1995}=\frac{1991.1995+1991.4}{1991.1995+4.1995}\)

Do \(\hept{\begin{cases}1991.1995=1991.1995\\1991.4< 1995.4\end{cases}}\Rightarrow1991.1995+1991.4< 1991.1995+1995.4\)

\(\Rightarrow\frac{1991.1995+1991.4}{1991.1995+4.1995}< \frac{1991.1995+1995.4}{1991.1995+4.1995}=1\)

\(\Rightarrow\frac{1991.1999}{1995.1995}< 1\)

Vậy \(\frac{1991.1999}{1995.1995}< 1.\)

28 tháng 8 2015

Ta có:

\(\frac{2013}{2014}>\frac{2013}{2014+2015}\)

\(\frac{2014}{2015}>\frac{2014}{2014+2015}\)

=> \(\frac{2013}{2014}+\frac{2014}{2015}>\frac{2013}{2014+2015}+\frac{2014}{2014+2015}\)

=> \(\frac{2013}{2014}+\frac{2014}{2015}>\frac{2013+2014}{2014+2015}\)