Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=(10101+1):(10102+1)<(10101+1+9):(10102 +1+9)=(10101+10):(10102+10)=[10.(10100+1]:[10.(10101+)]
=(10100+1):(10101+1)=A
=>A>B
ta có A= 100100+1/100101+1< 1
-> 100100+1/100101+1 < 100100+1+99/ 100101+1+99= 100100+100/100101+100= 100(10099+1)/ 100(100100+1) = 10099+1/100100+1 =B
-> A<B
B1: so sánh 1 phân số vs 1 ( lưu í so sánh phân số có lũy thừa lớn hơn phân số có lũy thừa còn lại)
B2: suy ra phân số đó sẽ nhỏ hơn chính bằng phân số đó +99 để đc = 100 như phần số nguyên( nếu phần nguyên là 10 thì + 9, là 7 thì + 6 .....)
B3: đặt phần nguyên làm thừa số chung sau đó sẽ ra kq giống như phân số còn lại mà ta chưa so sánh
kết quả là A<B hoặc B<A
Ta có :
\(A=\frac{100^{100}+1}{100^{101}+1}\)
\(\Rightarrow100A=\frac{100^{101}+100}{100^{101}+1}\)
\(\Rightarrow100A=1+\frac{99}{100^{101}+1}\)
lại có :
\(B=\frac{100^{99}+1}{100^{100}+1}\)
\(\Rightarrow100B=\frac{100^{100+100}}{100^{100}+1}\)
\(\Rightarrow100B=1+\frac{99}{100^{100}+1}\)
Vì \(1+\frac{99}{100^{101}+1}< 1+\frac{99}{100^{100}+1}\Rightarrow100A< 100B\)
\(\Rightarrow A< B\)
S6=15+17+19+21+...+151+153+155S6=15+17+19+21+...+151+153+155
Số các số hạng là:
(155−15):2+1=71(155−15):2+1=71
Vậy S6=(155+15).712=6035S6=(155+15).712=6035
S7=15+25+35+...+115S7=15+25+35+...+115
Số các số hạng là:
(115−15):10+1=11(115−15):10+1=11
Vậy S7=(115+15).112=715S7=(115+15).112=715
S4=24+25+26+...+125+126S4=24+25+26+...+125+126
Số các số hạng là:
(126−24):1+1=103
a, 444333=111333.4333=111333.64111
333444=111444.3444=111444.81111
suy ra 444333<333444
b,12+22+...+1002=1(2-1)+2(3-1)+...+100(101-1)
=(1.2+2.3+...+100.101)-(1+2+3...+100)
=A-5050
với A=1.2+2.3+...+100.101
3A=1.2.3+2.3.(4-1)+...+100.101.(102-99)
3A=1.2.3+2.3.4+...+100.101.102-(1.2.3+2.3.4+...+99.100.101)
=100.101.102
SUY RA A=100.101.102/3=343400
thay vào ta có:
12+22+...+1002=A-5050=343400-5050=338350
\(A=2+2^2+...+2^{2002}\)
\(2A=2^2+2^3+...+2^{2003}\)
\(2A-A=2^2+2^3+...+2^{2003}-2-2^2-...-2^{2002}\)
\(A=2^{2003}-2\)
Mà \(2^{2003}-2< 2^{2003}\Rightarrow A< B\)
Hình như đề câu 1 sai.
A3 =3.(1 +3 +32 +........+3100)
2A =3 +32 +..........+3101 -1-3 -31 -..........-3100
2A =3101 -1
Vay 2A < 3101
A = 1 + 3 + 32 + 33 + ... + 3100
3A = 3 + 32 + 33 + 34 + ... + 3101
3A - A = (3 + 32 + 33 + 34 + ... + 3101) - (1 + 3 + 32 + 33 + ... + 3100)
2A = 3101 - 1
Vì 3101 - 1 < 3101 nên A < 3101
\(A=1+3^2+3^3+....+3^{100}\)
\(3A=3+3^3+3^4+...+3^{101}\)
\(3A-A=3+3^3+3^4+...+3^{101}-1-3^2-3^3-...-3^{100}\)
\(2A=3^{101}-1\)
\(Vì\) \(3^{101}-1< 3^{101}\)
\(=>2A< 3^{101}\)
CHj giải cho em rồi đó, có j ko hiểu hỏi lại nha
A=1+3+32+...+3100
3A=3+32+33+...+3101
3A-A=(3+32+33+...+3101)-(1+3+32+...+3100)
2A=3101-1
Vì 3101-1<3101 nên 2A<3101
A>B vì :
A là 1 số nguyên còn B là những phần của số,như kiểu số thập phân ý