Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(A=\frac{6^3+3.6^3+3^3}{-13}=\frac{3^3.2^3+3^3.2^2+3^3}{-13}=\frac{3^3\left(8+4+1\right)}{-13}=\frac{27.13}{-13}=-27\)
b)
A=1+5+52+53+...+550
5A=5+52+53+...551
5A-A=(5+52+53+...+551)-(1+5+52+...+550)
4A=551-1
A=\(\frac{5^{51}-1}{4}\)
c)
A=2100-299+298-...+22-2
2A=2101-2100+299-...+23-22
2A+A=(2101-2100+...+23-22)+(2100-299+...+22-2)
3A=2101-2
A=\(\frac{2^{101}-2}{3}\)
b.
\(A=1+5+5^2+5^3+...+5^{49}+5^{50}\)
\(5A=5+5^2+5^3+...+5^{50}+5^{51}\)
\(5A-A=\left(5+5^2+5^3+...+5^{50}+5^{51}\right)-\left(1+5+5^2+..+5^{50}\right)\)
\(4A=5^{51}-1\)
\(A=\frac{5^{51}-1}{4}\)
\(1)\)\(M=3^0+3^2+3^4+3^6+...+3^{58}\)
\(M=\left(3^0+3^2\right)+\left(3^4+3^6\right)+...+\left(3^{57}+3^{58}\right)\)
\(M=\left(3^0+3^2\right)+3^4\left(3^0+3^2\right)+...+3^{57}\left(3^0+3^2\right)\)
\(M=10+3^4.10+...+3^{57}.10\)
\(M=10\left(1+3^4+...+3^{57}\right)\)
\(M=\overline{...0}\)
Vậy \(M\) có chữ số tận cùng là \(0\)
Chúc bạn học tốt ~
a)A=3^0+3^1+3^2+3^3+...+3^2012
A=1+3+3^2+3^3+..+3^2012
3A=3+3^2+3^3+3^4+..+3^2013
3A-A=3+3^2+3^3+3^4+..+3^2013-1-3-3^2-3^3-...-3^2012
2A=3^2013-1
A=\(\frac{3^{2013}-1}{2}\)
B=3^2013
=> A>B
b) A=1+5+5^2+5^3+..+5^99+5^100
5A=5+5^2+5^3+5^4+...+5^100+5^101
5A-A=5+5^2+5^3+5^4+..+5^100+5^101-1-5-5^2-5^3-..-5^99-5^100
4A=5^101-1
A=\(\frac{5^{101}-1}{4}\)
B=5^101/4
=> A<B
nhân 3A lên
nhân 5B lên