Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{1999x2000}{1999x2000+1}=\frac{1999x2000+1-1}{1999x2000+1}=1-\frac{1}{1999x2000+1}\)
\(\frac{2000x2001}{2000x2001+1}=\frac{2000x2001+1-1}{2000x2001+1}=1-\frac{1}{2000x2001+1}\)
Nhận thấy: \(\frac{1}{1999x2000+1}>\frac{1}{2000x2001+1}\)=> \(1-\frac{1}{1999x2000+1}< 1-\frac{1}{2000x2001+1}\)
=> \(\frac{1999x2000}{1999x2000+1}=\frac{2000x2001}{2000x2001+1}\)
\(\frac{1999x2000}{1999x2000+1}< \frac{2000x2001}{2000x2001+1}\)
\(C=\frac{1999^{2000}+1}{1999^{1999}+1}< \frac{1999^{1999}+1+1998}{1999^{2000}+1+1998}\)
\(=\frac{1999^{1999}+1999}{1999^{2000}+1999}\)
\(=\frac{1999\cdot(1999^{1998}+1)}{1999\cdot(1999^{1999}+1)}\)
\(=\frac{1999^{1999}+1}{1999^{1998}+1}=D\)
Vậy...
Ta có :
\(B=\frac{1999+2000}{2000+2001}=\frac{1999}{2000+2001}+\frac{2000}{2000+2001}\)
VẬY \(\frac{1999}{2000}>\frac{1999}{2000+2001}\)
\(\frac{2000}{2001}>\frac{2000}{2000+2001}\)
\(\Rightarrow\frac{1999}{2000}+\frac{2000}{2001}>\frac{1999+2000}{2000+2001}\)
\(\Rightarrow A>B\)
CHÚC BN HỌC TỐT #
\(\frac{-1999}{2000}\)>\(\frac{-1999}{2001}\)>\(\frac{-2000}{2001}\)
A<B đó bn.
A và B khi tính ra sẽ ra số rất lớn ko thể so sánh vì vậy
ta lấy số mũ :
_ A sẽ có số mũ là 2001 và 2002
_ B sẽ có số mũ là 2001 và 2000
A và B sẽ có 2001 = 2001 còn 2002 > 2000
=> A > B
chúc bạn học giỏi