Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2009.2009+2008}{2009.2009+2009}=\frac{2009.2009+2009}{2009.2009+2009}-\frac{1}{2009.2009+2009}=1-\frac{1}{2009.2009+2009}\)
\(\frac{2009.2009+2009}{2009.2009+2010}=\frac{2009.2009+2010}{2009.2009+2010}-\frac{1}{2009.2009+2010}=1-\frac{1}{2009.2009+2010}\)
\(\text{Vì }2009.2009+2009<2009.2009+2010\text{ nên: }\frac{1}{2009.2009+2009}>\frac{1}{2009.2009+2010}\)
\(\text{Hay }1-\frac{1}{2009.2009+2009}<\frac{1}{2009.2009+2010}\)
\(\text{Vậy }\frac{2009.2009+2008}{2009.2009+2009}<\frac{2009.2009+2009}{2009.2009+2010}\)
\(\frac{2009.2009+2009}{2009.2009+2010}=\frac{2009.2009+2008+1}{2009.2009+2009+1}\)
Đặt 2009.2009+2008 là a; 2009.2009+2009 là b. Ta so sánh \(\frac{a}{b}\)và \(\frac{a+1}{b+1}\)
Qui đồng mẫu số 2 phân số trên
\(\frac{a}{b}=\frac{a\left(b+1\right)}{b\left(b+1\right)}=\frac{a.b+a}{b.\left(b+1\right)}\)
\(\frac{a+1}{b+1}=\frac{\left(a+1\right).b}{b\left(b+1\right)}=\frac{a.b+b}{b\left(b+1\right)}\)
Vì 2008 < 2009
=> 2009.2009+2008 < 2009.2009+2009
=> a < b
=> a.b+a < a.b+b
=> \(\frac{a.b+a}{b.\left(b+1\right)}<\frac{a.b+b}{b.\left(b+1\right)}\)
=> \(\frac{a}{b}<\frac{a+1}{b+1}\)
=> \(\frac{2009.2009+2008}{2009.2009+2009}<\frac{2009.2009+2009}{2009.2009+2010}\)
mỗi số hạng trong biểu thức A đều nhỏ hơn 1 mà có 15 số nên tổng A sẽ nhỏ hơn 15
ta thay tong tren <1+1+1+1+1+1+1+1+1+1+1+1+1+1+1
hay tong tren be hon 15
Ta thấy :
\(\frac{2007}{2008}>\frac{2007}{2008+2009}\)
\(\frac{2008}{2009}>\frac{2008}{2008+2009}\)
nên : \(\frac{2007}{2008}+\frac{2008}{2009}>\frac{2007+2008}{2008+2009}\)hay M > N
\(\frac{2006}{2007}< \frac{2007}{2007}=1\)
\(\frac{2007}{2008}< \frac{2008}{2008}=1\)
\(\frac{2008}{2009}< \frac{2009}{2009}=1\)
\(\Rightarrow a=\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2009}< 1+1+1=3\)
\(A=\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2009}\)
\(A=\left(1-\frac{1}{2007}\right)+\left(1-\frac{1}{2008}\right)+\left(1-\frac{1}{2009}\right)\)
\(A=\left(1+1+1\right)-\left(\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)\)
\(A=3-\left(\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)< 3\)
=2008/2009-2009/2008+1/2009+2007/2008
=(2008/2009+1/2009)-(2009/2008-2007/2008)
=1-1/1004
=1003/1004
\(\frac{2008}{2009}-\frac{2009}{2008}+\frac{1}{2009}+\frac{2007}{2008}\)
=\(\left(\frac{2008}{2009}+\frac{1}{2009}\right)-\left(\frac{2009}{2008}-\frac{2007}{2008}\right)\)
=\(1-\frac{2}{2008}\)
=\(1-\frac{1}{1004}\)
=\(\frac{1003}{1004}\)
Chúc bn làm tốt nha!!!
Ta có:
\(\frac{63}{64}=\frac{63.2018}{64.2018}=\frac{127134}{129152}\)
\(\frac{2017}{2018}=\frac{2017.64}{2018.64}=\frac{129088}{129152}\)
Vậy \(\frac{63}{64}< \frac{2017}{2018}\)
Ta có 1 - 63/64=1/64
1 - 2017/2018=1/2018
(Ta so sánh phần tử số)
Vì 1/64>1/2018 nên 63/64>2017/2018
\(\frac{31}{95}\)<\(\frac{1}{3}\)
\(\frac{1}{3}=\frac{2012}{6035}\)<
63 /128 < 2008/2009
Hết
ta có:\(\frac{1}{2}=\frac{64}{128}>\frac{63}{128}\)
\(\frac{1}{2}=\frac{2008}{4016}< \frac{2008}{2009}\)
=> \(\frac{63}{128}< \frac{1}{2}< \frac{2008}{2009}\)
Vậy \(\frac{63}{128}< \frac{2008}{2009}\)