Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{18}{75}=\frac{6}{25}\)
\(\frac{28}{112}=\frac{1}{4}=\frac{6}{24}\)
Vì 25>24 nên \(\frac{6}{25}< \frac{6}{24}\Leftrightarrow\frac{18}{75}>\frac{28}{112}\)
Quy đồng tử số : 6/7 = 6 x20/7 x 20 = 120/140 . Vì 140 lớn hơn 137 nen 120/140 < 120/137 hay 6/7 < 120/137 .Vay 6/7 < 120/37.
a) Ta có : \(\frac{12}{48}< \frac{12}{47}\); \(\frac{12}{48}< \frac{13}{48}\)
=> \(\frac{12}{48}< \frac{13}{47}\)
b) Ta có : \(\frac{7}{13}=1-\frac{6}{13}\)
\(\frac{17}{23}=1-\frac{6}{23}\)
Mà \(-\frac{6}{13}< -\frac{6}{23}\)=> \(\frac{7}{13}< \frac{17}{23}\)
. 17/23 lớn hơn
. 24/45 lớn hơn
.13/45 lớn hơn
. 35/42 lớn hơn
. 35/30 lớn hơn
.47/92 lớn hơn
a)\(\frac{16.17-5}{16.16+11}=\frac{16.17-16+11}{16.16+11}\)\(=\frac{16.\left(17-1\right)+11}{16.16+11}=\frac{16.16+11}{16.16+11}=1\)
b) \(\frac{45.16-17}{28+45.15}=\frac{45.\left(15+1\right)-17}{28+45.15}\)\(=\frac{45.15+45-17}{28+45.15}=\frac{45.15+28}{28+45.15}=1\)
c) \(\frac{7256.4375-725}{3650+4375.7255}=\frac{\left(7255+1\right).4375-725}{3650+4375.7255}\)\(=\frac{7255.4375+4375-725}{3650+4375.7255}\)\(=\frac{7255.4375+3650}{3650+4375.7255}=1\)
Câu C nhớ sửa 725 thành 7255 nha !
Bài giải
\(a,\text{ }\frac{16\cdot17-5}{16\cdot16+11}=\frac{16\cdot16+16-5}{16\cdot16+11}=\frac{16\cdot16+11}{16\cdot16+11}=1\)
\(b,\text{ }\frac{45\cdot16-17}{28+45\cdot15}=\frac{45\cdot15+45-17}{45\cdot15+28}=\frac{45\cdot15+28}{45\cdot15+28}=1\)
\(c,\text{ }\frac{7256\cdot4375-725}{3650+4375\cdot7255}=\frac{4375\cdot7255+4375-725}{4375\cdot7255+3650}=\frac{4375\cdot7255+3650}{4375\cdot7255+3650}=1\)
Bài làm
c ) Ta có :
\(\frac{2017}{2018}< 1\)
\(\frac{12}{11}>1\)
\(\Rightarrow\frac{2017}{2018}< \frac{12}{11}\)
trả lời
a, quy đồng rồi so sánh
b,quy đồng rồi so sánh
c,phân số nào có tử nhỏ hơn mẫu khi so sành với phân số có tử lớn hơn mẫu đều bé hơn
d,quy đồng rồi so sánh
chắc vậy chúc bn học tốt
Bài 1:
Ta có:
\(N=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)
Do \(\hept{\begin{cases}\frac{2017}{2018+2019}< \frac{2017}{2018}\\\frac{2018}{2018+2019}< \frac{2018}{2019}\end{cases}\Rightarrow\frac{2017}{2018+2019}+\frac{2018}{2018+2019}< \frac{2017}{2018}+\frac{2018}{2019}}\)
\(\Leftrightarrow N< M\)
Vậy \(M>N.\)
Bài 2:
Ta có:
\(A=\frac{2017}{987653421}+\frac{2018}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}\)
\(B=\frac{2018}{987654321}+\frac{2017}{24681357}=\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)
Do \(\hept{\begin{cases}\frac{2017}{987654321}+\frac{2017}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}\\\frac{1}{24681357}>\frac{1}{987654321}\end{cases}}\)
\(\Rightarrow\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}>\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)
\(\Leftrightarrow A>B\)
Vậy \(A>B.\)
Bài 3:
\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}=1-\frac{1}{2017}+1-\frac{1}{2018}+1-\frac{1}{2019}+1+\frac{3}{2016}\)
\(=1+1+1+1-\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}+\frac{3}{2016}\)
\(=4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)\)
Do \(\hept{\begin{cases}\frac{1}{2017}< \frac{1}{2016}\\\frac{1}{2018}< \frac{1}{2016}\\\frac{1}{2019}< \frac{1}{2016}\end{cases}\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}< \frac{1}{2016}+\frac{1}{2016}+\frac{1}{2016}=\frac{3}{2016}}\)
\(\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\)âm
\(\Rightarrow4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)>4\)
Vậy \(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}>4.\)
Bài 4:
\(\frac{1991.1999}{1995.1995}=\frac{1991.\left(1995+4\right)}{\left(1991+4\right).1995}=\frac{1991.1995+1991.4}{1991.1995+4.1995}\)
Do \(\hept{\begin{cases}1991.1995=1991.1995\\1991.4< 1995.4\end{cases}}\Rightarrow1991.1995+1991.4< 1991.1995+1995.4\)
\(\Rightarrow\frac{1991.1995+1991.4}{1991.1995+4.1995}< \frac{1991.1995+1995.4}{1991.1995+4.1995}=1\)
\(\Rightarrow\frac{1991.1999}{1995.1995}< 1\)
Vậy \(\frac{1991.1999}{1995.1995}< 1.\)
So sánh: \(\frac{23}{48}< \frac{47}{92}\)(Nhân chéo tử này với mẫu kia bên nào có kết quả lớn hơn thì bên đó lớn hơn bạn nhekk)
Ta có \(\frac{23}{48}< \frac{23}{46}=\frac{46}{92}< \frac{47}{92}\)
Vậy \(\frac{23}{48}< \frac{47}{92}\)