Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2018^{2019}+1}{2018^{2019}-2017}=\frac{2018^{2019}-2017+2018}{2018^{2019}-2017}=\frac{2018^{2019}-2017}{2018^{2019}-2017}+\frac{2018}{2018^{2019}-2017}=1+\frac{2018}{2018^{2019}-2017}\)\(B=\frac{2018^{2019}+2}{2018^{2019}-2016}=\frac{2018^{2019}-2016+2018}{2018^{2019}-2016}=\frac{2018^{2019}-2016}{2018^{2019}-2016}+\frac{2018}{2018^{2019}-2016}=1+\frac{2018}{2018^{2019}-2016}\)Ta có: \(2018^{2019}-2017< 2018^{2019}-2016\)
\(\Rightarrow\frac{2018}{2018^{2019}-2017}>\frac{2018}{2018^{2019}-2016}\)
\(\Rightarrow1+\frac{2018}{2018^{2019}-2017}>1+\frac{2018}{2018^{2019}-2016}\)
\(\Rightarrow A>B\)
Vậy...
Ta có :
\(A=\frac{2018^{2019}+1}{2018^{2019}-2017}=\frac{2018^{2019}-2017+2018}{2018^{2019}-2017}=1+\frac{2018}{2018^{2019}-2017}\)
\(B=\frac{2018^{2019}+2}{2018^{2019}-2016}=\frac{2018^{2019}-2016+2018}{2018^{2019}-2016}=1+\frac{2018}{2018^{2019}-2016}\)
Vì \(2018^{2019}-2017< 2018^{2019}-2016\)nên \(\frac{2018}{2018^{2019}-2017}>\frac{2018}{2018^{2019}-2016}\)hay \(A>B\)
~ Hok tốt ~
20182018 - 20182017= 20182019 - 20182018: Vì
20182018- 20182017 = 20181 và 20182019 - 20182018 = 20181
Do vậy : 20181 = 20181
Xét A = 20172018 - 20172017
=> 2017A = 20172019 - 20172018
Ta thấy B = 2017A
Mà 2017A>A=>B>A
\(A=\frac{10^{2017}}{10^{2018+1}}=\frac{10^{2017}}{10^{2019}}=\frac{1}{10^2}\)
Tương Tự với \(B=\frac{1}{10^2}\)
\(\Rightarrow A=B\)
\(2018^{2019}-2018^{2018}=2018^{2018}.2018-2018^{2018}=2018^{2018}\left(2018-1\right)\)
\(2018^{2018}-2018^{2017}=2018^{2017}.2018-2018^{2017}=2018^{2017}\left(2018-1\right)\)
\(2018^{2019}-2018^{2018}>2018^{2018}-2018^{2017}\)
cám ơn banh nhé