K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 9 2021

Lời giải:

$\sqrt{3}+5> \sqrt{1}+5=6$

$\sqrt{2}+\sqrt{11}< \sqrt{4}+\sqrt{16}=6$

$\Rightarrow \sqrt{3}+5> \sqrt{2}+\sqrt{11}$

17 tháng 6 2017

1/ bình phương hai vế được (căn11)^2+(căn5)^2=11+5   4^2=16 vậy căn 11+căn 5=4

2/ tương tự (3 căn3 )^2=27   (căn19)^2-(căn 2)^2=19-2=17  vậy 3 căn 3 >căn 19-căn2

10 tháng 7 2021

\(5\sqrt{2}+\sqrt{75}=5\sqrt{2}+5\sqrt{3}\)

\(5\sqrt{3}+\sqrt{50}=5\sqrt{3}+5\sqrt{2}\)

\(\Rightarrow5\sqrt{2}+\sqrt{75}=5\sqrt{3}+\sqrt{50}\)

 

22 tháng 6 2016

\(1+\sqrt{3}< 2+\sqrt{2}\)

\(\sqrt{5}+\sqrt{3}>3\)

(Đúng thì k cho mình nhá!)

b: \(\sqrt{\dfrac{3}{2}}>\sqrt{\dfrac{2}{2}}=1\)

a: \(\left(2\sqrt{5}-3\sqrt{2}\right)^2=38-12\sqrt{10}=1+37-12\sqrt{10}\)

\(1^2=1\)

mà \(37-12\sqrt{10}< 0\)

nên \(2\sqrt{5}-3\sqrt{2}< 1\)

12 tháng 7 2016

bìn phương 2 vế lên rồi so sánh nha bạn

27 tháng 9 2017

a) Ta có: 
√2005 + √2003 > √2002 + √2000 
<=> 1/(√2005 + √2003) < 1/(√2002 + √2000) 
<=> 2/(√2005 + √2003) < 2/(√2002 + √2000) 
<=> (2005 - 2003)/(√2005 + √2003) < (2002 - 2000)/(√2002 + √2000) 
<=> √2005 - √2003 < √2002 - √2000 
<=> √2005 + √2000 < √2002 + √2003 

b) Tương tự câu a 
√(a + 6) + √(a + 4) > √(a + 2) + √a 
<=> 1/[√(a + 6) + √(a + 4)] < 1/[√(a + 2) + √a] 
<=> 2/[√(a + 6) + √(a + 4)] < 2/[√(a + 2) + √a] 
<=> [(a + 6) - (a + 4)/[√(a + 6) + √(a + 4)] < [(a + 2) - a]/[√(a + 2) + √a] 
<=> √(a + 6) - √(a + 4) < √(a + 2) - √a 
<=> √(a + 6) + √a < √(a + 4) + √(a + 2) 
đúng ko ?

27 tháng 9 2017

hình như nó sai cái gì a