K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(-3< -2.15< -\sqrt{3}< 0< \dfrac{13}{7}< \sqrt{8}< \dfrac{33}{12}\)

b: \(0< \sqrt{3}< \dfrac{13}{7}< 2.15< \dfrac{33}{12}< \sqrt{8}< 3\)

5 tháng 5 2018

a)-3<-2<-\(\sqrt[]{3}\)<0<\(\dfrac{13}{7}\)<\(\dfrac{33}{12}\)<\(\sqrt{8}\)<15

b)|0|<|-\(\sqrt{3}\)|\(\dfrac{13}{7}\)|<|-2|<|\(\dfrac{33}{12}\)|<\(\sqrt{8}\)<|-3|<15

11 tháng 9 2016

Viết các phân số dưới dạng tối giản:

- So sánh các số hữu tỉ dương với nhau:

Ta có : 

Vì 39 < 40 và 130 > 0 nên 

- Tương tự So sánh các số hữu tỉ âm với nhau

Vậy: 

8 tháng 11 2016

a)

\(\frac{x}{2}=\frac{y}{4}\)

\(\Rightarrow\frac{x^4}{16}=\frac{y^4}{256}=\frac{x^2y^2}{2^2.4^2}=\frac{4}{64}=\frac{1}{16}\)

\(\Rightarrow\begin{cases}x=\pm1\\y=\pm2\end{cases}\)

Mà 2 ; 4 cùng dấu

=> x ; y cùng dấu

Vậy ........

b)

\(4x=7y\)

\(\Rightarrow\frac{x}{7}=\frac{y}{4}\)

\(\Rightarrow\frac{x^2}{49}=\frac{y^2}{16}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có :

\(\frac{x^2}{49}=\frac{y^2}{16}=\frac{x^2+y^2}{49+16}=\frac{260}{65}=4\)

\(\Rightarrow\begin{cases}x=\pm14\\y=\pm8\end{cases}\)

Mày 4 và 7 cùng dấu

=> x ; y cùng dấu

Vậy ........

3 tháng 9 2019

 | x+1|=0                                        b) sai đè nha bn             

=> x+1=0                                                                                

=> x=0-1

=>x=(-1)

3 tháng 9 2019

2

b) \(\frac{50}{51}>\frac{50}{58};\frac{50}{58}>\frac{49}{58}\)=> \(\frac{50}{51}>\frac{49}{58}\)

c)  vì \(\frac{2019}{2018}>1\)=> \(\frac{2019+1}{2018+1}=\frac{2020}{2019}< \frac{2019}{2018}\)

31 tháng 7 2016

\(\left(\frac{1}{16}\right)^{10}\) và \(\left(\frac{1}{2}\right)^{50}\)

Ta có: \(\left(\frac{1}{2}\right)^{50}=\left[\left(\frac{1}{2}\right)^5\right]^{10}=\left(\frac{1}{32}\right)^{10}\)

Do \(\frac{1}{6}>\frac{1}{32}\Rightarrow\left(\frac{1}{6}\right)^{10}>\left(\frac{1}{32}\right)^{10}\)

Vậy \(\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)

31 tháng 7 2016

a) \(10^{20}\) và \(9^{10}\)

Vì 10 > 9 ; 20 > 10

nên \(10^{20}>9^{10}\)

Vậy \(10^{20}>9^{10}\)

b) \(\left(-5\right)^{30}\) và \(\left(-3\right)^{50}\)

Ta có: \(\left(-5\right)^{30}=5^{30}=\left(5^3\right)^{10}=125^{10}\)

           \(\left(-3\right)^{50}=3^{50}=\left(3^5\right)^{10}=243^{10}\)

Vì 243 > 125 nên \(125^{10}< 243^{10}\)

Vậy \(\left(-5\right)^{30}< \left(-3\right)^{50}\)

c) \(64^8\) và \(16^{12}\)

Ta có: \(64^8=\left(4^3\right)^8=4^{24}\)

          \(16^{12}=\left(4^2\right)^{12}=4^{24}\)

Vậy \(64^8=16^{12}\left(=4^{24}\right)\)

d) \(\left(\frac{1}{6}\right)^{10}\) và \(\left(\frac{1}{2}\right)^{50}\)

Ta có: \(\left(\frac{1}{6}\right)^{10}=\left[\left(\frac{1}{2}\right)^4\right]^{10}=\left(\frac{1}{2}\right)^{40}\)

Vì 40 < 50 nên \(\left(\frac{1}{2}\right)^{40}< \left(\frac{1}{2}\right)^{50}\)

Vậy \(\left(\frac{1}{16}\right)^{10}< \left(\frac{1}{2}\right)^{50}\)

11 tháng 9 2016

câu 1;

ta thấy 4 phan 5 bé hơn 1

1 < 1,1 

suy ra 4 phần 5 <1,1

 

11 tháng 9 2016

câu2;

ta thấy;

-500<0

0<0,001

 vây suy ra -500<0,001

10 tháng 10 2016

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{6}=\frac{z-3}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{2x-2}{4}=\frac{3y-6}{6}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+6-4}=\frac{2x-2+3y-6-z+3}{4+6-4}\)

\(=\frac{\left(2x+3y-z\right)+\left(-2+6+3\right)}{6}=\frac{50+\left(-5\right)}{6}=\frac{45}{6}=7,5\)

\(\frac{x-1}{2}=7,5\Rightarrow x-1=15\Rightarrow x=16\)

\(\frac{y-2}{3}=7,5\Rightarrow y-2=24,5\Rightarrow y=20,5\)

\(\frac{z-3}{4}=7,5\Rightarrow z-3=30\Rightarrow z=33\)