Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{27}>\sqrt{25}=5.\)
\(\sqrt{26}>\sqrt{25}=5.\)
\(\sqrt{27}+\sqrt{26}+1>5+5+1=11.\)
\(\sqrt{99}< \sqrt{100}=10\)
\(\sqrt{27}+\sqrt{26}+1>\sqrt{99}\)
ta có : \(\sqrt{27}+\sqrt{26}+1\approx11,29\)
\(\sqrt{99}\approx9,94\)
\(\Rightarrow\sqrt{27}+\sqrt{26}+1>\sqrt{99}\)
a)\(\sqrt{8}+3< \sqrt{9}+3=3+3=6< 6+\sqrt{2}\)
b)\(14=\sqrt{196}>\sqrt{195}=\sqrt{13.15}=\sqrt{13}.\sqrt{15}\)
c) Ta có: \(\hept{\begin{cases}\sqrt{27}>\sqrt{25}=5\\\sqrt{6}>\sqrt{4}=2\end{cases}\Rightarrow\sqrt{27}+\sqrt{6}+1>5+2+1=8}\)
Mà \(\sqrt{48}< \sqrt{49}=7< 8\)
\(\Rightarrow\sqrt{27}+\sqrt{6}+1>\sqrt{48}\)
Tham khảo nhé~
Đặt A = \(\sqrt{15}\)-\(\sqrt{14}\)và B = \(\sqrt{14}\)-\(\sqrt{13}\)(A, B >0)
A^2 = 29-2\(\sqrt{15.14}\) và B^2 = 27 -2\(\sqrt{14.13}\)
A^2-B^2 = 2-2(\(\sqrt{15.14}\)+\(\sqrt{14.13}\)) <0
=> A^2 < B^2 => A<B
1.a)
\(2\sqrt{3}=\sqrt{12}>\sqrt{9}=3.\)
\(3\sqrt{2}=\sqrt{18}>\sqrt{16}=4.\)
Suy ra VT > 7
1.b)
\(\sqrt{16}+\sqrt{25}=4+5=9\)
2.a)
\(\sqrt{21-6\sqrt{6}}=\sqrt{\left(3\sqrt{2}\right)^2-6\sqrt{6}+3}=3\sqrt{2}-\sqrt{3}\)
b)\(\sqrt{9-2\sqrt{14}}=\sqrt{\frac{18-4\sqrt{14}}{2}}=\frac{\sqrt{14}-2}{\sqrt{2}}=\sqrt{7}-1\)
Các câu còn lại bạn làm tương tự nhé!
c) \(\sqrt{4-\sqrt{7}}=\frac{1}{\sqrt{2}}.\sqrt{8-2\sqrt{7}}=\frac{1}{\sqrt{2}}\sqrt{7-2\sqrt{7}+1}\)
\(=\frac{1}{\sqrt{2}}\sqrt{\left(\sqrt{7}-1\right)^2}=\frac{\sqrt{2}\left(\sqrt{7}-1\right)}{2}\)
d) \(\sqrt{4+2\sqrt{3}-\sqrt{4-2\sqrt{3}}}=\sqrt{4+2\sqrt{3}-\sqrt{3-2\sqrt{3}+1}}\)
\(=\sqrt{4+2\sqrt{3}-\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\sqrt{4+2\sqrt{3}-\sqrt{3}+1}=\sqrt{5+\sqrt{3}}\)
a) \(3=\sqrt{9}\) > \(\sqrt{7}\)
=> \(3\) > \(\sqrt{7}\)
b) +) \(5\sqrt{2}=\sqrt{50}\)
+)\(2\sqrt{5}=\sqrt{20}\)
mà \(\sqrt{50}>\sqrt{20}\)
=> \(5\sqrt{2}>2\sqrt{5}\)
c) +) \(7=3+4\) \(=\sqrt{9}+\sqrt{16}\)
vì \(\sqrt{9}+\sqrt{16}>\sqrt{7}+\sqrt{15}\)
=> \(\sqrt{7}+\sqrt{15}< 7\)
d) +) \(6-\sqrt{15}=\sqrt{36}-\sqrt{15}\)
vì \(\sqrt{36}-\sqrt{15}< \sqrt{37}-\sqrt{14}\)
=> \(\sqrt{37}-\sqrt{14}>6-\sqrt{15}\)
e) +) 6 + \(2\sqrt{2}\) = \(6+\sqrt{8}\)
+) 6 + 3 = \(6+\sqrt{9}\)
vì 6 + \(\sqrt{8}\) < 6 + \(\sqrt{9}\)
=> 6 + \(2\sqrt{2}\) <\(6+3\)
a,\(\sqrt{12}=2\sqrt{3}=\sqrt{3}+\sqrt{3}\)
ta có \(\sqrt{5}>\sqrt{3}\)và\(\sqrt{7}>\sqrt{3}\)=>\(\sqrt{5}+\sqrt{7}>\sqrt{12}\)
\(\sqrt{37}>6\)
\(-\sqrt{14}>-\sqrt{15}\)
=> \(\sqrt{37}-\sqrt{14}>6-\sqrt{15}\)
\(\sqrt{27}-\sqrt{14}>6-\sqrt{15}\)