Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b/ 2^100
= 2^31 . 2^69
= 2^31 . 2^63 . 2^6
= 2^31 . (2^9)^7 . (2^2)^3
= 2^31 . 512^7 . 4^3 (1)
10^31
= 2^31 . 5^31
= 2^31 . 5^28 . 5^3
= 2^31 . (5^4)^7 . 5^3
= 2^31 . 625^7 . 5^3 (2)
Từ (1) và (2), ta có:
2^31 . 512^7 . 4^3 < 2^31 . 312^7 . 5^3 < 2^31 . 625^7 . 5^3.
Hay 2^100 < 10^31.
a/
10^30=1000^10<1024^10=2^100
\(10^{30}=2^{30}.5^{30}\)
\(2^{100}=2^{30}.2^{70}\)
Vì 230 = 230 => Ta so sánh 530 và 270
\(5^{30}=\left(5^3\right)^{10}=125^{10}\)
\(2^{70}=\left(2^7\right)^{10}=128^{10}\)
Vì 12510 < 12810 => 1030 > 2100
a) Ta có : \(10^{30}=\left(10^3\right)^{10}=1000^{10}\)
\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}\)
mà \(1000< 1024\)
\(\Rightarrow1000^{10}< 1024^{10}\)
\(\Rightarrow10^{30}< 2^{100}\)
b) Ta có : \(333^{444}=\left(111.3\right)^{444}=111^{444}.3^{444}=111^{444}.\left(3^4\right)^{111}=111^{444}.81^{111}\)
\(444^{333}=\left(111.4\right)^{333}=111^{333}.4^{333}=111^{333}.\left(4^3\right)^{111}=111^{333}.64^{111}\)
mà \(444>333\Rightarrow111^{444}>111^{333}\)
và \(81>64\Rightarrow81^{111}>64^{111}\)
\(\Rightarrow111^{444}.81^{111}>111^{333}.64^{111}\)
\(\Rightarrow333^{444}>444^{333}\)
c) Ta có : \(2^{161}>2^{160}=\left(2^4\right)^{40}=16^{40}>13^{40}\)
\(\Rightarrow2^{161}>13^{40}\)
d) Ta có : \(3^{453}>3^{450}=\left(3^3\right)^{150}=27^{150}>25^{150}=\left(5^2\right)^{150}=5^{300}\)
\(\Rightarrow3^{453}>5^{300}\)
\(10^{30}=\left(10^3\right)^{10}=1000^{10}\)
\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}\)
Vì 100010 < 102410 nên 1030 < 2100
A = 1030 = 103.10 = 100010
B = 2100 = 210.10 = 102410
=> A < B
vào đây: so sánh A=1030 và B=2100