Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(10^{30}=\left(10^3\right)^{10}=1000^{10}\)
\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}\)
mà \(1000< 1024\)
\(\Rightarrow1000^{10}< 1024^{10}\)
\(\Rightarrow10^{30}< 2^{100}\)
b) Ta có : \(333^{444}=\left(111.3\right)^{444}=111^{444}.3^{444}=111^{444}.\left(3^4\right)^{111}=111^{444}.81^{111}\)
\(444^{333}=\left(111.4\right)^{333}=111^{333}.4^{333}=111^{333}.\left(4^3\right)^{111}=111^{333}.64^{111}\)
mà \(444>333\Rightarrow111^{444}>111^{333}\)
và \(81>64\Rightarrow81^{111}>64^{111}\)
\(\Rightarrow111^{444}.81^{111}>111^{333}.64^{111}\)
\(\Rightarrow333^{444}>444^{333}\)
c) Ta có : \(2^{161}>2^{160}=\left(2^4\right)^{40}=16^{40}>13^{40}\)
\(\Rightarrow2^{161}>13^{40}\)
d) Ta có : \(3^{453}>3^{450}=\left(3^3\right)^{150}=27^{150}>25^{150}=\left(5^2\right)^{150}=5^{300}\)
\(\Rightarrow3^{453}>5^{300}\)
b) \(3^{453}>3^{450}=\left(3^3\right)^{150}=27^{150}\)
\(5^{300}=\left(5^2\right)^{150}=25^{150}\)
\(27>25\Leftrightarrow27^{150}>25^{150}\)
nên \(3^{453}>5^{300}\).
a) \(2^{161}>2^{160}=\left(2^{16}\right)^{10}>13^{10}\)
Ta có: 5300=(52)150= 25150
3453>3450=(33)150=27150
So sánh ta thấy 2150<27150<3453=> 5300< 3453
a) \(5^{300}=\left(5^2\right)^{^{150}}=25^{150}\)
\(3^{453}>3^{450}=\left(3^3\right)^{^{150}}=27^{150}>25^{150}=5^{300}\)
vậy \(5^{300}< 3^{453}\).
Ta có:\(5^{300}=\left(5^2\right)^{150}=25^{150}\)
\(3^{453}>3^{450}\)
Mà \(3^{450}=\left(3^3\right)^{150}=9^{150}\)
Có:\(25^{150}>9^{150}\Rightarrow5^{300}>3^{450}\)hay\(5^{300}>3^{453}\)
Ta có : 31^2 = 961 < 1000 và 2^10 = 1024 > 1000.Vậy :
31^2 < 2^10
---> 31^4 < 2^20 = (2^4)^5 = 16^5 < 17^5
---> 31^12 < 17^15 = 17.17^14
---> 31^11 < (17/31).17^14 < 17^14
Vậy 31^11 < 17^14.
Ta có : 31^2 = 961 < 1000 và 2^10 = 1024 > 1000.Vậy :
31^2 < 2^10
---> 31^4 < 2^20 = (2^4)^5 = 16^5 < 17^5
---> 31^12 < 17^15 = 17.17^14
---> 31^11 < (17/31).17^14 < 17^14
Vậy 31^11 < 17^14.
chúc bn hok tốt @_@
Ta có:
5300 = (52)150 = 25150
3453 > 3450 = (33)150 = 27150
Vì 25150 < 27150
=> 5300 < 3453
Ủng hộ mk nha ☆_☆^_-
a ) Ta có :
\(5^{36}=\left(5^3\right)^{12}=125^{12}\)
\(11^{24}=\left(11^2\right)^{12}=121^{12}\)
Do \(125^{12}>121^{12}\Rightarrow5^{36}>11^{24}\)
b ) \(3^{2n}=\left(3^2\right)^n=9^n\)
\(2^{3n}=\left(2^3\right)^n=8^n\)
Do \(9^n>8^n\)
\(\Rightarrow3^{2n}>2^{3n}\)
Chúc bạn học tốt !!!
a) 536 = ( 53 )12 = 12512 < 1 >
1124 = ( 112 )12 = 12112 < 2 >
Từ < 1 > và < 2 > => 536 = 12512 > 12112 = 1124
=> 536 > 1124.
Vậy 536 > 1124.
b) 32n = 9n < 1 >
23n = 8n < 2 >
Từ < 1 > và < 2 > => 32n = 9n > 8n = 23n.
=> 32n > 23n.
Vậy 32n > 23n.
5300 = (52)150 = 25150
3453 > 3450 = (33)150 = 27150
Vì 25150 < 27120
=> 5300 < 3453
Ủng hộ mk nha ^_-
cảm ơn soyeon_Tiểu bàng giải nhiều