K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\sqrt{27}>\sqrt{25}=5.\)

\(\sqrt{26}>\sqrt{25}=5.\)

\(\sqrt{27}+\sqrt{26}+1>5+5+1=11.\)

\(\sqrt{99}< \sqrt{100}=10\)

\(\sqrt{27}+\sqrt{26}+1>\sqrt{99}\)

4 tháng 9 2016

ta có : \(\sqrt{27}+\sqrt{26}+1\approx11,29\)

                \(\sqrt{99}\approx9,94\)

\(\Rightarrow\sqrt{27}+\sqrt{26}+1>\sqrt{99}\)

\(\sqrt{37}>6\)

\(-\sqrt{14}>-\sqrt{15}\)

=> \(\sqrt{37}-\sqrt{14}>6-\sqrt{15}\)

4 tháng 9 2016

\(\sqrt{27}-\sqrt{14}>6-\sqrt{15}\)

18 tháng 7 2017

1.>

2.<

3.>

4.<

30 tháng 8 2020

\(a\)

\(\sqrt{7}+\sqrt{15}\) 

\(=\sqrt{7+15}\)

\(=4,69\)

\(4,69< 7\)

\(\Rightarrow\sqrt{7}+\sqrt{15}< 7\)

\(b\)

\(\sqrt{7}+\sqrt{15}+1\)

\(=\sqrt{7+15}+1\)

\(=4,69+1\)

\(=5,69\)

\(\sqrt{45}\)

\(=6,7\)

\(5,69< 6,7\)

\(\Rightarrow\)\(\sqrt{7}+\sqrt{15}+1\)\(< \)\(\sqrt{45}\)

\(c\)

\(\frac{23-2\sqrt{19}}{3}\)

\(=\frac{22.4,53}{3}\)

\(=\frac{95,7}{3}\)

\(=31,9\)

\(\sqrt{27}\)

\(=5,19\)

\(31,9>5,19\)

\(\text{​​}\Rightarrow\text{​​}\text{​​}\)\(\frac{23-2\sqrt{19}}{3}\)\(>\sqrt{27}\)

\(d\)

\(\sqrt{3\sqrt{2}}\)

\(=\sqrt{3.1,41}\)

\(=\sqrt{4,23}\)

\(=2,05\)

\(\sqrt{2\sqrt{3}}\)

\(=\sqrt{2.1,73}\)

\(=\sqrt{3,46}\)

\(=1,86\)

\(2,05>1,86\)

\(\Rightarrow\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)

\(Học \) \(Tốt !!!\)

30 tháng 8 2020

a) Ta có : \(\sqrt{7}< \sqrt{9}=3;\sqrt{15}< \sqrt{16}=4\)

Do đó : \(\sqrt{7}+\sqrt{15}< 3+4=7\)

b) Ta có : \(\sqrt{17}>\sqrt{16}=4;\sqrt{5}>\sqrt{4}=2\)

\(\Rightarrow\sqrt{17}+\sqrt{5}+1>4+2+1=7\)

Lại có : \(\sqrt{45}< \sqrt{49}< 7\)

Do đó : \(\sqrt{17}+\sqrt{5}+1>\sqrt{45}\)

c) Ta thấy : \(\sqrt{19}>\sqrt{16}=4\)

\(\Rightarrow2\sqrt{19}>2.4=8\)

\(\Rightarrow-2\sqrt{19}< -8\)

\(\Rightarrow23-2\sqrt{19}< 23-8=15\)

\(\Rightarrow\frac{23-2\sqrt{19}}{3}< 5\). Mặt khác : \(\sqrt{27}>\sqrt{25}=5\)

Nên : \(\frac{23-2\sqrt{19}}{3}< \sqrt{27}\)

d) Vì : \(18>12>0\Rightarrow\sqrt{18}>\sqrt{12}>0\)

\(\Leftrightarrow3\sqrt{2}>2\sqrt{3}>0\)

\(\Rightarrow\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)

25 tháng 8 2020

Ta có: \(23-2\sqrt{19}< 23-2\sqrt{16}=23-2.4=15\)

\(3\sqrt{27}>3\sqrt{25}=3.5=15\)

=> \(23-2\sqrt{19}< 15< 3\sqrt{27}\)

=> \(23-2\sqrt{19}< 3\sqrt{27}\)

18 tháng 11 2016

Giả sử 

\(\frac{23-2\sqrt{19}}{3}< \sqrt{27}\)

\(\Leftrightarrow23-2\sqrt{29}< 3\sqrt{27}\)

\(\Leftrightarrow23< 3\sqrt{27}+2\sqrt{19}\)

Ta có

\(3\sqrt{27}+2\sqrt{19}>3\sqrt{25}+2\sqrt{16}=23\)

Vậy giả sử là đúng 

25 tháng 9 2016

\(\frac{23-2\sqrt{19}}{3}< \frac{23-2\sqrt{16}}{3}=\frac{23-8}{3}=5=\sqrt{25}< \sqrt{27}\)

vậy

23 tháng 11 2019

Ta có:

\(\left(\sqrt{3+\sqrt{20}}\right)^2-\left(\sqrt{5+\sqrt{5}}\right)^2\)

\(=3+\sqrt{20}-5-\sqrt{5}\)

\(=-2+2\sqrt{5}-\sqrt{5}\)

\(=-2+\sqrt{5}\)

 Ta thấy: \(5>4\Rightarrow\sqrt{5}>\sqrt{4}\Rightarrow\sqrt{5}>2\)

Do đó : hiệu trên >0

Suy ra : \(\sqrt{3+\sqrt{20}}>\sqrt{5+\sqrt{5}}\)

16 tháng 6 2018

a    \(\left(\sqrt{5\sqrt{7}}\right)^4=\left(\left(\sqrt{5\sqrt{7}}\right)^2\right)^2=\left(5\sqrt{7}\right)^2=25\cdot7=175\)

\(=\left(\sqrt{7\sqrt{5}}\right)^4=\left(\left(\sqrt{7\sqrt{5}}\right)^2\right)^2=\left(7\sqrt{5}\right)^2=49\cdot5=240\)

vì 175<240\(\Rightarrow\left(\sqrt{5\sqrt{7}}\right)^4< \left(\sqrt{7\sqrt{5}}\right)^4\Rightarrow\sqrt{5\sqrt{7}}< \sqrt{7\sqrt{5}}\)

b     \(6=\sqrt{36}\)

\(\sqrt{31}< \sqrt{36};\sqrt{19}>\sqrt{17}\Rightarrow\sqrt{31}-\sqrt{19}< \sqrt{36}-\sqrt{17}=6-\sqrt{17}\)

c      \(\left(\sqrt{10}+\sqrt{17}\right)^2=10+2\sqrt{10\cdot17}+17=27+2\sqrt{170}\)

\(\left(\sqrt{61}\right)^2=61=27+34=27+2\cdot17=27+2\sqrt{289}\)

vì \(2\sqrt{170}< 2\sqrt{289}\Rightarrow27+2\sqrt{170}< 27+2\sqrt{289}\Rightarrow\left(\sqrt{10}+\sqrt{17}\right)^2< \left(\sqrt{61}\right)^2\)

\(\Rightarrow\sqrt{10}+\sqrt{17}< \sqrt{61}\)