Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(\frac{13}{17}\)=1-\(\frac{4}{17}\); \(\frac{46}{50}\)=1-\(\frac{4}{50}\)
Vì \(\frac{4}{17}\)>\(\frac{4}{50}\)=> 1-\(\frac{4}{17}\)<1-\(\frac{4}{50}\)
Vậy\(\frac{13}{17}\)<\(\frac{46}{50}\)
a: 2010/2011=1-1/2011
2011/2012=1-1/2012
mà -1/2011>-1/2012
nên 2010/2011>2011/2012
b: \(\dfrac{2010}{2011}< 1< \dfrac{2001}{2000}\)
nên -2010/2011>-2001/2000
a) ta có : \(\dfrac{1}{2010}>0\) và \(\dfrac{-7}{19}< 0\) \(\Leftrightarrow\dfrac{1}{2010}>\dfrac{-7}{19}\) vậy \(\dfrac{1}{2010}>\dfrac{-7}{19}\)
b) ta có : \(497< 499\Rightarrow\dfrac{497}{499}< 1\Leftrightarrow\dfrac{497}{-499}>-1\) (1)
ta có : \(2345>2341\Rightarrow\dfrac{2345}{2341}>1\Leftrightarrow\dfrac{-2345}{2341}< -1\) (2)
từ (1) và (2) ta có \(\dfrac{497}{-499}>\dfrac{-2345}{2341}\) vậy \(\dfrac{497}{-499}>\dfrac{-2345}{2341}\)
Quy đồng mẫu số:
\(\frac{a}{b}\)= \(\frac{a\left(b+2001\right)}{b\left(b+2001\right)}\)=\(\frac{ab+2001a}{b\left(b+2001\right)}\)
\(\frac{a+2001}{b+2001}\)=\(\frac{\left(a+2001\right)b}{\left(b+2001\right)b}\)=\(\frac{ab+2001b}{b\left(b+2001\right)}\)
Vì b>0 nên mẫu số của 2 phân số trên dương.Chỉ cần so sánh tử số
so sánh ab+2001a vớiab+2001b
-Nếu a<b =>Tử số phân số thứ nhất < tử số phân số thứ 2
=> \(\frac{a}{b}\)< \(\frac{a+2001}{b+2001}\)
-Nếu a=b => 2 phân số bằng 1
-Nếu a>b => tử số phân số thứ nhất lớn hơn tử số phân số thứ 2
=> \(\frac{a}{b}\)< \(\frac{a+2001}{b+2001}\)
Ta có:
( a + 2001 ) .b = a.b + b.2001 ( 1 )
( b . 2001 ) . a = a.b + a.2001 ( 2 )
Xét 3 trường hợp :
TH1: a=b
Từ ( 1 ) và ( 2 ) => b.2001 = a.2001 => a.b + b.2001 = a.b + a.2001 => ( a + 2001 ) .b = ( b + 2001 ) .a => \(\frac{a}{b}\)= \(\frac{a+2001}{b+2001}\)
TH2: a<b
Từ ( 1 ) và ( 2 ) => b.2001 > a.2001 => a.b + b.2001 > a.b + a.2001 => ( a + 2001 ) .b > ( b + 2001 ) .a => \(\frac{a}{b}\)< \(\frac{a+2001}{b+2001}\)
TH3: a>b
Từ ( 1 ) và ( 2 ) => b.2001 < a.2001 => a.b + b.2001 < a.b + a.2001 => ( a + 2001 ) .b < ( b + 2001 ) .a => \(\frac{a}{b}\)> \(\frac{a+2001}{b+2001}\)
ủng hộ nhé
\(\frac{a}{b}-\frac{a+2001}{b+2001}=\frac{a\left(b+2001\right)-b\left(a+2001\right)}{b\left(b+2001\right)}=\frac{2001\left(a-b\right)}{b\left(b+2001\right)}.\)
Ta có \(b>0\Rightarrow b\left(b+2001\right)>0\)
+ Nếu \(a>b\Rightarrow2001\left(a-b\right)>0\Rightarrow\frac{2001\left(a-b\right)}{b\left(b+2001\right)}>0\Rightarrow\frac{a}{b}>\frac{a+2001}{b+2001}\)
+ Nếu \(a< b\Rightarrow2001\left(a-b\right)< 0\Rightarrow\frac{2001\left(a-b\right)}{b\left(b+2001\right)}< 0\Rightarrow\frac{a}{b}< \frac{a+2001}{b+2001}\)
Xét: a(b+2001)= b(a+2001)
ab+2001a=ab+2001b
Xảy ra các trường hợp:
+) Nếu a>b => ab+2001a > ab+2001b
=> a/b > a+2001/b+2001
+) Nếu a<b => ab+2001a < ab+2001b
=> a/b > a+2001/b+2001
+) Nếu a=b => ab+ 2001a = ab + 2001b
=> a/b = a+2001/b+2001
Nếu
a < b
=) \(\frac{a}{b}< \frac{a+2001}{b+2001}\)
Nếu a > b
=) \(\frac{a}{b}>\frac{a+2001}{b+2001}\)
Nếu a = b
=) \(\frac{a}{b}=\frac{a+2001}{b+2001}\)
Xét tích \(a\left(b+2001\right)=ab+2001a\\ b\left(a+2001\right)=ab+2001b.\)Vì \(b>0\)nên \(b+2001>0\).
Nếu \(a>b\) thì \(ab+2001a>ab+2001b\\ a\left(b+2001\right)>b\left(a+2001\right)\)
\(\frac{\Rightarrow a}{b}>\frac{a+2001}{b+2001}\)
Nếu \(a< b\) thì \(\frac{\Rightarrow a}{b}< \frac{a+2001}{b+2001}\)
Nếu \(a=b\) thì rõ ràng \(\frac{a}{b}=\frac{a+2001}{b+2001}\)
a) \(\frac{1}{2010}\)và \(\frac{-7}{19}\)
Ta có : \(\frac{1}{2010}>0>\frac{-7}{19}\)
\(\Rightarrow\frac{1}{2010}>\frac{-7}{19}\)
b)\(\frac{497}{-499}\)và \(\frac{-2345}{2341}\)
Ta có : \(\frac{497}{-499}< -1< \frac{-2345}{2341}\)
\(\Rightarrow\frac{497}{-499}>\frac{-2345}{2341}\)
c)\(\frac{2000}{2001}\)và \(\frac{2001}{2002}\)
Ta có : \(\frac{2000}{2001}=1-\frac{1}{2001};\frac{2001}{2002}=1-\frac{1}{2002}\)
mà \(\frac{1}{2001}>\frac{1}{2002}\Rightarrow1-\frac{1}{2001}< 1-\frac{1}{2002}\)
\(\Rightarrow\frac{2000}{2001}< \frac{2001}{2002}\)