Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)A=54-53/53+54=1/107=2/214
B=135-133/134+135=2/169
tự so sánh tiếp
a. Ta có :
\(\frac{1}{2}< \frac{1}{3}\)
\(\frac{2}{3}>\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{3}< \frac{1}{2}< \frac{2}{3}\)
Ta có : \(A=\frac{3^{10}+1}{3^9+1}\) => \(A.\frac{1}{3}=\frac{3^{10}+1}{3^{10}+3}=\frac{\left(3^{10}+3\right)-2}{3^{10}+3}=1-\frac{2}{3^{10}+3}\)
\(B.\frac{1}{3}=\frac{3^9+1}{3^8+1}\Rightarrow B.\frac{1}{3}=\frac{3^9+1}{3^9+3}=\frac{\left(3^9+3\right)-2}{3^9+3}=1-\frac{2}{3^9+3}\)
Vì : \(\frac{2}{3^{10}+3}< \frac{2}{3^9+3}\) nên \(A>B\)
\(a,\frac{27}{82}< \frac{27}{83}=\frac{1}{3};\frac{26}{75}>\frac{25}{75}=\frac{1}{3}\)
nên\(\frac{27}{82}< \frac{26}{75}\)
\(b,\frac{49}{78}< \frac{52}{78}=\frac{2}{3};\frac{64}{95}>\frac{64}{96}=\frac{2}{3}\)
nên\(\frac{49}{78}< \frac{64}{95}\Rightarrow\frac{-49}{78}>\frac{64}{-95}\)
c, Rút gọn:\(\frac{2525}{2929}=\frac{25}{29};\frac{217}{245}=\frac{31}{35}\)
Ta có:\(1-\frac{25}{29}=\frac{4}{29};1-\frac{31}{35}=\frac{4}{35}\Rightarrow1-\frac{25}{29}>1-\frac{31}{35}\)
\(\Rightarrow\frac{25}{29}< \frac{31}{35}\)hay\(\frac{2525}{2929}< \frac{217}{245}\)
\(d,A=\frac{3^{10}+1}{3^9+1}=1+\frac{3}{3^9+1}\);\(B=\frac{3^9+1}{3^8+1}=1+\frac{3}{3^8+1}\)
Dễ dàng nhận thấy \(\frac{3}{3^9+1}< \frac{3}{3^8+1}\Rightarrow A< B\)
Xin lỗi bạn e, mk ko làm được. Chúc bạn học tốt