K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2017

Ta có : ''Phần hơn'' của \(\frac{7^{58}+2}{7^{57}+2}\) là :

             \(\frac{7^{58}+2}{^{ }7^{57}+2}\) \(-\) 1 = \(\frac{7^{57}.6}{7^{57}+2}\)

             ''Phần hơn'' của \(\frac{5^{57}+2017}{5^{56}+2017}\) với 1 là :

             \(\frac{7^{57}+2017}{7^{56}+2017}\) \(-\) 1 = \(\frac{7^{56}.6}{7^{56}+2017}\)

           Ta có :\(\frac{7^{56}.6}{7^{56}+2017}\) = \(\frac{7^{56}.7.6}{\left(7^{56}+2017\right)7}\) = \(\frac{7^{57}.6}{7^{57}+14119}\)

         Ta thấy \(\frac{7^{57}.6}{7^{57}+2}\)> \(\frac{7^{57}.6}{7^{57}+14119}\)

         Suy ra \(\frac{7^{57}.6}{7^{57}+2}\) > \(\frac{7^{56}.6}{7^{56}+2017}\)

         Do đó \(\frac{7^{58}+2}{7^{57}+2}\) > \(\frac{7^{57}+2017}{7^{56}+2017}\)

26 tháng 2 2017

ồ thú vị đấy mình học rồi nhưng busy thông cảm ha^_^

26 tháng 2 2017

ngoài ra a/b>1 thì a+m/b+m > 1 (m thuộc z, m khác 0) và a,b cậu biết rồi đó

27 tháng 3 2016

ai k mình mình k lại

\(E=\dfrac{7^{58}+7-5}{7^{57}+2}=7-\dfrac{5}{7^{57}+2}\)

\(F=\dfrac{7^{57}+2009\cdot7-2009\cdot6}{7^{56}+2009}=7-\dfrac{12054}{7^{56}+2009}\)

mà \(\dfrac{5}{7^{57}+2}>\dfrac{12054}{7^{56}+2009}\)

nên E<F

23 tháng 2 2016

20092008 +1/20092009 +1 >....

de qua viet moi tay

31 tháng 1 2018

Ta thấy \(7^{58}>7^{57}\Rightarrow7^{58}+2>7^{57}+2\Rightarrow E=\dfrac{7^{58}+2}{7^{57}+2}>1\)

\(7^{57}< 7^{58}\Rightarrow7^{57}+200< 7^{58}+200\Rightarrow F=\dfrac{7^{57}+200}{7^{58}+200}< 1\)

Vậy E > F

31 tháng 1 2018

\(VT>1\) \(VP< 1\Leftrightarrow VT>VP\)