Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
9^27=3^81 > 81^13 =3^52
5^14 =25^7 < 27^7
10^30>9^30=3^90 > 2^100 (chú ý 3^3>2^4)
2^300=8^100 < 3^200=9^100
8^5=2^15=2^6.2^9 < 2^6.3^6 (chú ý 2^3<3^2)
3^450=(3^3)^150=27^150 > 5^300=(5^2)^150=25^150
\(2^{100}=\left(2^4\right)^{25}=16^{25}>10^3\)
\(3^{450}=\left(3^3\right)^{150}=27^{150}>5^{300}=\left(5^2\right)^{150}=25^{150}\)
Vì 333 < 444 và 333 > 111
=> \(333^{111}<444^{333}\)
a,1030...2100
1030=103x10=(103)10=100010
2100=210x10=(210)10=102410
vì 102410 > 100010
=>2100 >1030
b,3450...2300
Ta thấy :3 > 2
mà 450 > 300 =>3450 > 2300
Lộn, lộn,
\(3^{450}=\left(3^3\right)^{150}=27^{150}\)
Vì \(27^{150}>25^{150}\)nên \(A>B\)
1) Ta có: \(3^{450}=\left(3^3\right)^{150}=9^{150}\).
\(5^{300}=\left(5^2\right)^{150}=25^{150}\)
Ví \(9^{150}< 25^{150}\)nên \(3^{450}< 5^{300}\)
\(\Rightarrow A< B\)
2010^2 và 2009.2011
<=> (2009+1).2010 và 2009.(2010+1)
<=> 2009.2010+2010 > 2009.2010+2009
b) phân tích 2^16 - 1 ta được
2^16-1=(2^8+1)(2^4+1)(2^2+1)(2^2-1)=A
Vậy B>A
tick mik đi rùi mik làm típ câu b cho !!!
Ta có 27^5=3^3^5=3^15
243^3=3^5^3=3^15
Vậy A=B
2^300=2^(3.100)=2^3^100=8^100
3^200=3^(2.100)=3^2^100=9^100
Vậy A<B
\(a,A=27^5\)và \(B=243^3\)
Ta xét :
\(A=27^5=\left(3^3\right)^5=3^{15}\)
\(B=243^3=\left(3^5\right)^3=3^{15}\)
Mà \(3^{15}=3^{15}\)
\(\Rightarrow A=B\)
\(b,A=2^{300}\)và \(B=3^{200}\)
Ta xét :
\(A=2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(B=3^{200}=\left(3^2\right)^{100}=9^{100}\)
Mà \(9^{100}>8^{100}\)
\(\Rightarrow B>A\)
a/ \(9^{27}=\left(3^2\right)^{27}=3^{54}\) và \(81^{13}=\left(3^4\right)^{13}=3^{52}\Rightarrow3^{54}>3^{52}\Rightarrow9^{27}>81^{13}\)
b/ \(5^{14}=\left(5^2\right)^7=25^7< 27^7\)
d/ \(2^{300}=\left(2^3\right)^{100}=8^{100}\) và \(3^{200}=\left(3^2\right)^{100}=9^{100}\Rightarrow8^{100}< 9^{100}\Rightarrow2^{300}< 3^{200}\)
f/ \(3^{450}=\left(3^3\right)^{150}=27^{150}\) và \(5^{300}=\left(5^2\right)^{150}=25^{150}\Rightarrow27^{150}>25^{150}\Rightarrow3^{450}>5^{300}\)
c/ \(10^{30}=\left(10^3\right)^{10}=1000^{10}\) và \(2^{100}=\left(2^{10}\right)^{10}=1024^{10}\Rightarrow1000^{10}< 1024^{10}\Rightarrow10^{30}< 2^{100}\)