K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2018

9^27=3^81 > 81^13  =3^52

5^14 =25^7 < 27^7 

10^30>9^30=3^90 > 2^100 (chú ý 3^3>2^4)

2^300=8^100 < 3^200=9^100

8^5=2^15=2^6.2^9 < 2^6.3^6  (chú ý 2^3<3^2)

3^450=(3^3)^150=27^150 > 5^300=(5^2)^150=25^150

13 tháng 9 2015

\(2^{100}=\left(2^4\right)^{25}=16^{25}>10^3\)

\(3^{450}=\left(3^3\right)^{150}=27^{150}>5^{300}=\left(5^2\right)^{150}=25^{150}\)

Vì 333 < 444 và 333 > 111

=> \(333^{111}<444^{333}\)

13 tháng 9 2015

bạn phải nói là câu j thì mình mới biết được  chứ

1 tháng 10 2017

a,1030...2100

1030=103x10=(103)10=100010

2100=210x10=(210)10=102410

vì 102410 > 100010

          =>2100 >1030

b,3450...2300

Ta thấy :3 > 2

         mà 450 > 300 =>3450 > 2300

1 tháng 10 2017

gơi ý : bn đưa về cùng cơ số hoặc số mũ mà so sánh

ai đi ngang qua cho mk xin 1 L-I-K-E nha . Thanks 

chúc các bn hok tốt ! ^^

19 tháng 9 2015

cần mk trả lời ko?

nếu cần tick nha, mk chỉ cho


 

9 tháng 11 2017

Lộn, lộn, 

\(3^{450}=\left(3^3\right)^{150}=27^{150}\)

Vì \(27^{150}>25^{150}\)nên \(A>B\)

9 tháng 11 2017

1) Ta có: \(3^{450}=\left(3^3\right)^{150}=9^{150}\).

               \(5^{300}=\left(5^2\right)^{150}=25^{150}\)

Ví \(9^{150}< 25^{150}\)nên \(3^{450}< 5^{300}\)

\(\Rightarrow A< B\)

26 tháng 12 2015

2010^2 và 2009.2011 
<=> (2009+1).2010 và 2009.(2010+1) 
<=> 2009.2010+2010 > 2009.2010+2009 
b) phân tích 2^16 - 1 ta được 
2^16-1=(2^8+1)(2^4+1)(2^2+1)(2^2-1)=A 
Vậy B>A 

   tick mik đi rùi mik làm típ câu b cho !!!

26 tháng 12 2015

b,<

a,>

             Tíck mình nha~~~

21 tháng 8 2017

Ta có 27^5=3^3^5=3^15
243^3=3^5^3=3^15
Vậy A=B
2^300=2^(3.100)=2^3^100=8^100
3^200=3^(2.100)=3^2^100=9^100
Vậy A<B

21 tháng 8 2017

\(a,A=27^5\)và \(B=243^3\)

Ta xét :

\(A=27^5=\left(3^3\right)^5=3^{15}\)

\(B=243^3=\left(3^5\right)^3=3^{15}\)

Mà \(3^{15}=3^{15}\)

\(\Rightarrow A=B\)

\(b,A=2^{300}\)và \(B=3^{200}\)

Ta xét :

\(A=2^{300}=\left(2^3\right)^{100}=8^{100}\)

\(B=3^{200}=\left(3^2\right)^{100}=9^{100}\)

Mà \(9^{100}>8^{100}\)

\(\Rightarrow B>A\)

13 tháng 9 2018

a/ \(9^{27}=\left(3^2\right)^{27}=3^{54}\) và \(81^{13}=\left(3^4\right)^{13}=3^{52}\Rightarrow3^{54}>3^{52}\Rightarrow9^{27}>81^{13}\)

b/ \(5^{14}=\left(5^2\right)^7=25^7< 27^7\)

d/ \(2^{300}=\left(2^3\right)^{100}=8^{100}\) và \(3^{200}=\left(3^2\right)^{100}=9^{100}\Rightarrow8^{100}< 9^{100}\Rightarrow2^{300}< 3^{200}\)

f/ \(3^{450}=\left(3^3\right)^{150}=27^{150}\) và \(5^{300}=\left(5^2\right)^{150}=25^{150}\Rightarrow27^{150}>25^{150}\Rightarrow3^{450}>5^{300}\)

c/ \(10^{30}=\left(10^3\right)^{10}=1000^{10}\) và \(2^{100}=\left(2^{10}\right)^{10}=1024^{10}\Rightarrow1000^{10}< 1024^{10}\Rightarrow10^{30}< 2^{100}\)