Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình làm câu b thôi nhé câu a từ từ mình làm
b/ 2^27 và 3^18
Ta có 2^27= ( 2^3 )^9=8^9
3^18= (3^2)^9=9^9
vì 8^9<9^9
suy ra 2^27<3^18
\(2^{90}=2^{5.18}=\left(2^5\right)^{18}=32^{18}\)
\(5^{36}=5^{2.18}=\left(5^2\right)^{18}=25^{18}\)
Vì \(32^{18}>25^{18}\Rightarrow2^{90}>5^{36}\)
b,
\(2^{27}=2^{3.9}=\left(2^3\right)^9=8^9\)
\(3^{18}=3^{2.9}=\left(3^2\right)^9=9^9\)
Vì \(8^9< 9^9\Rightarrow2^{27}< 3^{18}\)
7=3x9
-> 2^27= (2^3)^9=8^9
18=2x9
-> 3^18=(3^2)^9=9^9
b,
so sánh 2^27 và 3^18, ta đưa về so sánh 2 số có cùng lũy thừa. Áp dụng luôn phần a, ta có:
2^27=8^9
3^18=9^9
vì 8<9 nên 8^9<9^9
vậy 2^27<3^18
Ta có: 290 = (210)9 = 10249
536 = (54)9 = 6259
Ta thấy: 10249 > 6259
nên 290 > 536
Ta có:
290 = 25 . 18 = (25)18 = 3218
536 = 52 . 18 = (52)18 = 2518
Vì 32 > 25 nên 3218 > 2518. \(\Rightarrow\) 290 > 536
Vậy...
Mình có cách ngắn hơn bạn xem nhé.
Xét số mũ của 2^3^2^3 ta có: 3^2^3=3^8=3^2.4=9^4>8^4=2^12>2^10
=>2^3^2^3>2^210=2^2.2^9=4^2^9>3^2^9=3^2^3^2
Vậy 2^3^2>3^2^3
được mà Hatsune Miku
\(2^{3^{2^{3^{2^{3^{2^{3^{2^{3^{...}}}}}}}}}}\)
Bài 1
a) \(2^{90}=\left(2^3\right)^{30}=8^{30}\)
\(3^{18}=\left(3^2\right)^9=9^9\)
Vì \(8^{30}>9^9\Rightarrow2^{90}>3^{18}\)
b) \(2^{27}=\left(2^3\right)^9=8^9\)
\(3^{18}=\left(3^2\right)^9=8^9\)
Vì \(8^9=8^9\Rightarrow2^{27}=3^{18}\)
Bài 2
Ta có :
\(\left|x-2013\right|\ge0\forall x\)
\(\Rightarrow\left|x-2013\right|+2\ge2\)
\(\Rightarrow\frac{2016}{\left|x-2013\right|+2}\le\frac{2016}{2}\)
\(MaxA=1008\)
\(\Leftrightarrow x-2013=0\)
\(\Leftrightarrow x=2013\)
1,
a,Ta có : 290=(210)9=10249
318=(32)9=99
=>10249>99
=>290>318
b,ta có:227=(23)9=89
318=(32)9=99>89
=>227<318
2,\(\frac{2026}{x-2013+2}\)lớn nhất khi x-2013+2 bé nhất và x-2013+2>0(do x-2013+2 là mẫu số)
=>x-2013+2=1
=>x=2014
Học tốt nha bạn!!!
Bài 1 :
a) Ta có :
\(2^{225}=\left(2^3\right)^{75}=8^{75}\)
\(3^{150}=\left(3^2\right)^{75}=9^{75}\)
Vì \(8^{75}< 9^{75}\Leftrightarrow2^{225}< 3^{150}\)
b) Ta có :
\(2^{91}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\)
Vì \(8192^7>3125^7\Leftrightarrow2^{91}>5^{35}\)
c)Ta có :
\(3^{4000}=\left(3^4\right)^{1000}=81^{1000}\)
\(9^{2000}=\left(9^2\right)^{1000}=81^{1000}\)
Vì \(81^{1000}=81^{1000}\Leftrightarrow3^{4000}=9^{2000}\)
d) Ta có :
\(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(3^{223}< 3^{222}=\left(3^2\right)^{111}=9^{111}\)
Mà \(8^{111}< 9^{111}\Leftrightarrow2^{332}< 3^{223}\)
Bài 2 :
a) \(\dfrac{120^3}{40^3}=\left(\dfrac{120}{4}\right)^3=3^3=27\)
b) \(\dfrac{390^4}{130^4}=\left(\dfrac{390}{130}\right)^4=3^4=81\)
c) \(\dfrac{45^{10}.5^{20}}{75^{15}}=\dfrac{\left(3^2.5\right)^{10}.5^{20}}{\left(3.5^2\right)^{15}}=\dfrac{3^{20}.5^{10}.5^{20}}{3^{15}.5^{30}}=3^5=243\)
Bài 1:
a.Ta có :
\(2^{225}=\left(2^3\right)^{75}=8^{75}\)
\(3^{150}=\left(3^2\right)^{75}=9^{75}\)
Vì \(8^{75}< 9^{75}\) nên \(2^{225}< 3^{150}\)
b. Ta có :
\(2^{91}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\)
Vì \(8192^7>3125^7\) nên \(2^{91}>5^{35}\)
c. Ta có :
\(3^{4000}=\left(3^2\right)^{2000}=9^{2000}\)
Vì \(9^{2000}=9^{2000}\) nên \(3^{4000}=9^{2000}\)
Bài 2:
a. \(\dfrac{120^3}{30^3}=\dfrac{\left(30.4\right)^3}{30^3}=\dfrac{30^3.4^3}{30^3}=4^3=64\)
b. \(\dfrac{45^{10}.5^{20}}{75^{15}}=\dfrac{\left(5.3^2\right)^{10}.5^{20}}{\left(3.5^2\right)^{15}}=\dfrac{5^{10}.3^{20}.5^{20}}{3^{15}.5^{30}}=\dfrac{5^{30}.3^{20}}{3^{15}.5^{30}}=3^5=243\)
c. \(\dfrac{390^4}{130^4}=\dfrac{\left(130.3\right)^4}{130^4}=\dfrac{130^4.3^4}{130^4}=3^4=81\)
a) Ta có: 266 . 734 = 232 . 234 . 734 < (2.2.7)34 = 2834
Vậy 2834 > 266 . 734
Tương tự
1)
2600=(26)100=64100
3400=(34)100=81100
Vì 81>64 =>81100>64100
3)GTNN A=-1
\(2^{600}=2^{6^{100}}\)= \(2^6\)và \(3^{400}=\)\(3^{4^{100}}\) =\(3^4\)
Vì \(2^6< 3^4\)nên \(2^{600}< 3^{400}\)
Ta có :
2332<2333=(23)111=8111
3223>3222=(32)111=9111
Mà 8111<9111nên 2332<3223