Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình làm câu b thôi nhé câu a từ từ mình làm
b/ 2^27 và 3^18
Ta có 2^27= ( 2^3 )^9=8^9
3^18= (3^2)^9=9^9
vì 8^9<9^9
suy ra 2^27<3^18
\(2^{90}=2^{5.18}=\left(2^5\right)^{18}=32^{18}\)
\(5^{36}=5^{2.18}=\left(5^2\right)^{18}=25^{18}\)
Vì \(32^{18}>25^{18}\Rightarrow2^{90}>5^{36}\)
b,
\(2^{27}=2^{3.9}=\left(2^3\right)^9=8^9\)
\(3^{18}=3^{2.9}=\left(3^2\right)^9=9^9\)
Vì \(8^9< 9^9\Rightarrow2^{27}< 3^{18}\)
a) \(=\left(\frac{-1}{5}^3\right)^{100}va\left(\frac{-1}{3}^5\right)^{100}\)
\(=\left(\frac{-1}{125}\right)^{100}va\left(\frac{-1}{243}\right)^{100}\)
Mà \(\frac{-1}{125}>\frac{-1}{243}\)
\(\Rightarrow\left(\frac{-1}{5}\right)^{300}>\left(\frac{-1}{3}\right)^{500}\)
b)\(2^{27}=8^9;3^{18}=9^9\)
a)
2^90 = (2^10)^9 = 1024^9
5^36 = (5^4)^9 = 625^9
Mà 1024^9 > 625^9 => 2^90 > 5^36
Vậy 2^90 > 5^36
b)
2^27 = (2^3)^9 = 8^9
3^18 = (3^2)^9 = 9^9
Mà 8^9 > 9^9 => 2^27 > 3^18
Vậy 2^27 > 3^18
k mik nha mn ! ^ - ^
\(2^{300}=8^{100}=64^{50}\)
\(vi64>25\)
\(=>64^{50}>25^{50}\)
\(vay25^{50}< 2^{300}\)
a) ta có: 290 = (25)18 = 3218
536 = (52)18 = 2518
=> ...
b) 227 = (23)9 = 89
318 = (32)9 = 99
=>...
Ta có:\(2^{90}=\left(2^5\right)^{18}=32^{18}\)
\(5^{36}=\left(5^2\right)^{18}=25^{18}\)
Vì \(32^{18}>25^{18}\Rightarrow2^{90}>5^{36}\)
Ta có:
291 = (213)7 = 81927
535 = (55)7 = 31257
Do 8192 > 3125 nên 81927 > 31257
Vậy 291 > 535
Ta có:
\(2^{91}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\)
Vì \(8192^7>3125^7\left(8125>3125\right)\) nên \(2^{91}>5^{35}\)
Vậy \(2^{91}>5^{35}\)
Bài 2 :2
a) 3200 và 2300
Ta có :
3200 = ( 32 )100 = 9100
2300 = ( 23 )100 = 8100
Vì 9100 > 8100 Nên 3200 > 2300
b) 1255 và 257
Ta có :
1255 = ( 53 )5 = 515
257 = ( 52 )7 = 514
Vì 515 > 514 ( 15 > 14 )
Nên 1255 > 257
Tương tự ....
Bài 2 :
a) 3200 và 2300
Ta có :
3200 = ( 32 )100 = 9100
2300 = ( 23 )100 = 8100
Vì 9100 > 8100 nên 3200 > 2300
bt mỗi câu này thôi
a) \(\left(-\dfrac{1}{5}\right)^{300}=\left(-\dfrac{1}{5}\right)^{3.100}=\left(-\dfrac{1}{125}\right)^{100}\)
\(\left(-\dfrac{1}{3}\right)^{500}=\left(-\dfrac{1}{3}\right)^{5.100}=\left(-\dfrac{1}{243}\right)^{100}\)
Vì \(\left(-\dfrac{1}{125}\right)^{100}< \left(-\dfrac{1}{243}\right)^{100}\)
Nên \(\left(-\dfrac{1}{5}\right)^{300}< \left(-\dfrac{1}{3}\right)^{500}\)
b) \(2^{27}=2^{3.9}=\left(2^3\right)^9=8^9\)
\(3^{18}=3^{2.9}=\left(3^2\right)^9=9^9\)
Vì \(8^9< 9^9\)nên \(2^{27}< 3^{18}\)
b) Ta có: 227 = (23)9 = 89
...............318 = (32)9 = 99
Vì: 8 < 9
Nên: 89 < 99
Hay: 227 < 318
a)290 và 536
\(2^{90}=2^{5.18}=\left(2^5\right)^{18}=32^{18}\)
\(5^{36}=5^{2.18}=\left(5^2\right)^{18}=25^{18}\)
Vì \(32>25\)
Nên \(32^{18}>25^{18}\)
Vậy \(2^{90}>5^{36}\)
b) 227 và 318
\(2^{27}=2^{3.9}=\left(2^3\right)^9=8^9\)
\(3^{18}=3^{2.9}=\left(3^2\right)^9=9^9\)
Vì \(8< 9\)
Nên \(8^9< 9^9\)
Vậy \(2^{27}< 3^{18}\)
\(\left\{{}\begin{matrix}2^{90}=\left(2^{10}\right)^9=1024^9\\5^{36}=\left(5^4\right)^9=625^9\end{matrix}\right.\Leftrightarrow2^{90}>5^{36}\)
\(\left\{{}\begin{matrix}2^{27}=\left(2^3\right)^9=8^9\\3^{18}=\left(3^2\right)^9=9^9\end{matrix}\right.\Leftrightarrow2^{27}< 3^{18}\)