K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2017

B1:

a,<    b,<

c,<    d,>

e,>    g,>

B2:

a,<    b,<

c,<

19 tháng 4 2018

b1

a, <

b, <

c, <

d,>

e,>

g, >

a, <

b, <

c,<

13 tháng 12 2015

a) Xin lỗi bạn nhé !!!

 b) 2010^2 và 2009.2011 
<=> (2009+1).2010 và 2009.(2010+1) 
<=> 2009.2010+2010 > 2009.2010+2009 

=> 2010^2 > 2009 . 2011

c) 

\(3^{450}=3^{3\cdot150}=\left(3^3\right)^{150}=27^{150}\)

\(5^{300}=5^{2\cdot150}=\left(5^2\right)^{150}=25^{150}\)

Vì \(27^{150}>25^{150}\)

Nên \(3^{450}>5^{300}\)

13 tháng 12 2015

a) A = 2 + 22 + ... + 22010

       = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 22009 + 22010 )

       = 2.(1+2) + 23.(1+2) + ... + 22009.(1+2)

       = 2.3 + 23.3 + ... + 22009.3 chia hết cho 3

   A = 2 + 22 + ... + 22010

      = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 22008 + 22009 + 22010 )

      = 2.(1+2+22) + 24.(1+2+22) + ... + 22008.(1+2+22)

      = 2.7 + 24.7 + ... + 22008.7 chia hết cho 7

b) Xét A = 2009.2011

             = (2010-1) . (2010+1)

             = 2010.2010 + 1.2010 - 1.2010 - 1.1

             = 2010.2010 - 1

          B = A - 1

Vậy B < A

c) Ta có : 3450 = 35.90 = 1590

                   5300 = 53.100 = 15100

Vì 1590 < 15100 nên 3450 < 5300 hay A < B

15 tháng 10 2017

1. \(A=\left(2^{2017}\cdot3+2^{2017}\cdot5\right):2^{2018}\)

\(A=\left[2^{2017}.\left(3+5\right)\right]:\left(2^{2018}\right)\)

\(A=\left[2^{2017}.2^3\right]:\left(2^{2018}\right)\)

\(A=2^{2020}:2^{2018}=2^2=4\)

2. a) 2 + x : 5 = 6

=> x : 5 = 4

=> x = 20

b) 5x(7 + 48:x) = 45

=> x(7 + 48:x) = 9

=> 7x + 48 = 9

=> 7x = -39

=> x = -39/7.

c) Không hiểu đề câu này cho lắm.

3. \(25^{30}=\left(5^2\right)^{30}=5^{60};125^{19}=\left(5^3\right)^{19}=5^{57}\)

Vì 60 > 57 => \(25^{30}>125^{19}\)

4. \(S=1+7^1+...+7^{100}\)

\(\Rightarrow7S=7+7^2+...+7^{101}\)

\(\Rightarrow7S-S=7+7^2+...+7^{101}-1-7-...-7^{100}\)

\(\Rightarrow6S=7^{101}-1\)

\(\Rightarrow S=\frac{7^{101}-1}{6}\)

5. \(Q=1+2+2^2+...+2^{49}\)

\(\Rightarrow2Q=2+2^2+...+2^{50}\)

\(\Rightarrow2Q-Q=2+2^2+...+2^{50}-1-2-...-2^{49}\)

\(\Rightarrow Q=2^{50}-1\)

\(\Rightarrow2^{50}-1+1=2^n\)

\(\Rightarrow2^{50}=2^n\Rightarrow n=50\)

18 tháng 3 2018

sai

ta thấy tên tử và dưới mẫu = nhau

=>A=B=1

18 tháng 3 2018

không phải đâu Hoàng Phú Huy, nhìn kĩ lại đi