K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2024

Ta thấy \(a=1000^{1001}\) 

\(=1000.1000^{1000}\) 

\(=1000^{1000}+1000^{1000}+...+1000^{1000}\) (1000 lần)

\(>1^1+2^2+...+1000^{1000}\)

 Nên \(a>c\)

 Lại có \(2^{2^{64}}=2^{2^4.2^{60}}=\left(2^{2^4}\right)^{2^{60}}\) \(>\left(2^{10}\right)^{2^{10}}=1024^{1024}>1000^{1001}\) nên \(b>a\)

 Vậy \(b>a>c\)

 

Ta có công thức Pascal: \(C^m_n+C^{m+1}_n=C^{m+1}_{n+1}\)

Áp dụng vào biểu thức đề cho, ta được: \(C^{k+1}_{2002}\le C^{1001}_{2002}\)

Điều này đúng với mọi (k+1) đi từ 1 đến 2001 (Ta có thể dễ dàng nhận ra điều này khi nhìn vào tam giác Pascal để nhận xét rằng hệ số ngay chính giữa luôn lớn nhất)

Chứng minh: Xét \(C^{k+1}_{2002}-C^k_{2002}=\frac{2002!}{\left(2002-k-1\right)!.\left(k+1\right)!}-\frac{2002!}{\left(2002-k!\right).k!}\)

\(=\frac{2002!.\left(2002-k\right)}{\left(2002-k\right)!.\left(k+1\right)!}-\frac{2002!.\left(k+1\right)}{\left(2002-k\right)!.\left(k+1\right)!}=\frac{2002!}{\left(2002-k\right)!.\left(k+1!\right)}\left(2001-2k\right)\)

+) \(k< 1000,5\Rightarrow2001-2k>0\Rightarrow C^{k+1}_{2002}-C^k_{2002}>0\Rightarrow C^{k+1}_{2002}>C^k_{2002}\)

+) \(k>1000,5\Rightarrow2001-2k< 0\Rightarrow C^{k+1}_{2002}-C^k_{2002}< 0\Rightarrow C^{k+1}_{2002}< C^k_{2002}\)

Vậy dãy số gồm các số hạng có dạng \(C_{2002}^{k+1}\)sẽ tăng dần khi k đi từ 1 tới 1001,5 và giảm dần khi k đi từ 1001,5 tới 2001.

Vậy \(C_{2002}^{k+1}\)lớn nhất khi \(k+1=1001\)---> ĐPCM

NV
31 tháng 7 2020

Số hạng tổng quát trong khai triển: \(C_n^k2^kx^{n-k}\) với \(n=1000\)

Hệ số của số hạng thứ k là: \(C_n^k2^k\)

Hệ số này là lớn nhất khi và chỉ khi: \(\left\{{}\begin{matrix}C_n^k2^k\ge C_n^{k+1}2^{k+1}\\C_n^k2^k\ge C_n^{k-1}2^{k-1}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{n!}{k!\left(n-k\right)!}\ge\frac{n!.2}{\left(k+1\right)!\left(n-k-1\right)!}\\\frac{n!.2}{k!\left(n-k\right)!}\ge\frac{n!}{\left(k-1\right)!\left(n-k+1\right)!}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}k+1\ge2\left(n-k\right)\\2\left(n-k+1\right)\ge k\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}k\ge\frac{2n-1}{3}=\frac{1999}{3}\\k\le\frac{2n+2}{3}=\frac{2002}{3}\end{matrix}\right.\)

\(\Rightarrow k=667\)

Vậy hệ số lớn nhất là \(C_{100}^{667}2^{667}\)

7 tháng 6 2017

Đáp án A

+) Có 5 số TN có 1 chữ số: 0,1,2,3,4.

+) Có 4.5 = 20số TN có 2 chữ số.

+) Có 4.5.5 = 100 số tự nhiên có 3 chữ số.

Vậy có 100 + 20 + 5 = 125 số.

22 tháng 2 2018

Đáp án A

Ta có các TH sau

TH1: Số tự nhiên có 1 chữ số, có 5 chữ số.

TH2: Số tự nhiên có 2 chữ số, có 4.5 = 20 số.

TH3: Số tự nhiên có 3 chữ số, có 4.5.5 = 100 số.

Suy ra có tất cả 5 +20 +100 = 125 số thỏa mãn đề bài

a: \(\left(\sqrt{3}\right)^x=243\)

=>\(3^{\dfrac{1}{2}\cdot x}=3^5\)

=>\(\dfrac{1}{2}\cdot x=5\)

=>x=10

b: \(0,1^x=1000\)

=>\(\left(\dfrac{1}{10}\right)^x=1000\)

=>\(10^{-x}=10^3\)

=>-x=3

=>x=-3

c: \(\left(0,2\right)^{x+3}< \dfrac{1}{5}\)

=>\(\left(0,2\right)^{x+3}< 0,2\)

=>x+3>1

=>x>-2

d: \(\left(\dfrac{3}{5}\right)^{2x+1}>\left(\dfrac{5}{3}\right)^2\)

=>\(\left(\dfrac{3}{5}\right)^{2x+1}>\left(\dfrac{3}{5}\right)^{-2}\)

=>2x+1<-2

=>2x<-3

=>\(x< -\dfrac{3}{2}\)

e: \(5^{x-1}+5^{x+2}=3\)

=>\(5^x\cdot\dfrac{1}{5}+5^x\cdot25=3\)

=>\(5^x=\dfrac{3}{25,2}=\dfrac{1}{8,4}=\dfrac{10}{84}=\dfrac{5}{42}\)

=>\(x=log_5\left(\dfrac{5}{42}\right)=1-log_542\)

20 tháng 12 2019
https://i.imgur.com/wUyT8n3.jpg
20 tháng 12 2019
https://i.imgur.com/2kW03we.jpg
14 tháng 3 2021

bạn đố thế ai chơi