Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy: B là tích của 99 số âm
\(\Rightarrow B=\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{1}{16}\right)...\left(1-\dfrac{1}{100^2}\right)\)
\(=\dfrac{3}{2^2}.\dfrac{8}{3^2}.\dfrac{15}{4^2}...\dfrac{9999}{10^2}\)
\(=\dfrac{1.3}{2^2}.\dfrac{2.4}{3^2}.\dfrac{3.5}{4^2}...\dfrac{99.101}{100^2}\)
\(=\dfrac{1.2.3...98.99}{2.3.4...99.100}.\dfrac{3.4.5...100.101}{2.3.4...99.100}\)
\(=\dfrac{1}{2}.\dfrac{101}{100}\)
\(=\dfrac{101}{200}>\dfrac{1}{2}\)
\(\Rightarrow B< -\dfrac{1}{2}\).
ủa sao từ \(\dfrac{1}{2^2}-1\) lại thành \(1-\dfrac{1}{2^2}\) vậy bạn
a)\(A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}+\frac{1}{2^{49}}\)
\(A=1-\frac{1}{2^{50}}<1\)
Vậy \(A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}<1\)
b)\(B=\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}\)
\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\)
\(3B-B=2B=1-\frac{1}{3^{100}}\)
\(B=\frac{1-\frac{1}{3^{100}}}{2}\)
Vì \(1-\frac{1}{3^{100}}<1\)nên\(\frac{1-\frac{1}{3^{100}}}{2}<\frac{1}{2}\)
Vậy \(B=\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}<\frac{1}{2}\)
c) \(C=\frac{1}{4^1}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{999}}+\frac{1}{4^{1000}}\)
\(4C=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{998}}+\frac{1}{4^{999}}\)
\(4C-C=3C=1-\frac{1}{4^{1000}}\)
\(C=\frac{1-\frac{1}{4^{1000}}}{3}\)
Vì \(1-\frac{1}{4^{1000}}<1\)nên\(\frac{1-\frac{1}{4^{1000}}}{3}<\frac{1}{3}\)
Vậy \(C=\frac{1}{4^1}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{999}}+\frac{1}{4^{1000}}<\frac{1}{3}\)
Đổi: 675km = 67 500 000cm
Trên bản đồ tỉ lệ 1:2 500 000 quãng đường dài là:
67 500 000 : 2 500 000 = 27 (cm)
Đáp số: 27 cm
Xin lỗi nha
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=\)
\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{100-99}{99.100}=\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}< 1\)
B=[1/4-1][1/9-1][1/16-1]....[1/10000-1]
B=-3/4.-8/9.-15/16....-9999/10000
mai giải nốt cho bây giờ còn phải đi chơi