Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(6< 9\Rightarrow\sqrt{6}< \sqrt{9}=3\)
\(\Rightarrow\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{6}}}}< \sqrt{6+\sqrt{6+\sqrt{6+3}}}\)
\(=\sqrt{6+\sqrt{6+3}}\)\(=\sqrt{6+3}\)\(=3\)
\(12>9\Rightarrow\sqrt{12}>\sqrt{9}=3\)
\(\Rightarrow\sqrt{12+\sqrt{12+\sqrt{12}}}>\sqrt{12}>3\)
\(\Rightarrow\sqrt{12+\sqrt{12+\sqrt{12}}}>\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{6}}}}\)
\(A=\sqrt{12+\sqrt{12+\sqrt{12}}}+\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{6}}}}< \sqrt{12+\sqrt{12+\sqrt{16}}}+\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{9}}}}\)\(=7\)
\(B=\sqrt{14}+\sqrt{11}>\sqrt{13,69}+\sqrt{10,89}=7\)
\(\Rightarrow A< B\)
Ta có:
\(12< 16\Rightarrow\sqrt{12}< \sqrt{16}=4\\ 6< 9\Rightarrow\sqrt{6}< \sqrt{9}=3\)
\(\Rightarrow A< \sqrt{12+\sqrt{12+4}}+\sqrt{6+\sqrt{6+\sqrt{6+3}}}=\sqrt{12+4}+\sqrt{6+3}=4+3=7\) (1)
Lại có :
\(B=\sqrt{14}+\sqrt{11}\Rightarrow B^2=25+2\sqrt{14.11}=25+2\sqrt{154}>25+2\sqrt{144}=25+2.12=49=7^2\)
Mà B > 0
\(\Rightarrow B>7\) (2)
Từ (1),(2) suy ra A<B
bài 2 nhé, bài 1 không biết làm.
cách giải: hơi dài nhưng đọc 1 lần để sử dụng cả đời =))
+ bỏ dấu căn bằng cách phân tích biểu thức trong căn thành 1 bình phương
- nhắm đến hằng đẳng thức số 1 và số 2.
+ đưa về giá trị tuyệt đối, xét dấu để phá dấu giá trị tuyệt đối
* nhận xét: +Vì đặc trưng của 2 hđt được đề cập. số hạng không chứa căn sẽ là tổng của 2 bình phương \(\left(A^2+B^2\right)\) số hạng chứa căn sẽ có dạng \(\pm2AB\)
=> ta sẽ phân tích số hạng chứa căn để tìm A và B
+ nhẩm bằng máy tính, tìm 2 số hạng:
thử lần lượt các trường hợp, lấy vd là câu c)
\(2AB=12\sqrt{5}=2\cdot6\sqrt{5}\)
\(\Rightarrow AB=6\sqrt{5}\)
- đầu tiên xét đơn giản với B là căn 5 => A= 6
\(A^2+B^2=36+5=41\) (41 khác 29 => loại)
- xét \(6\sqrt{5}=2\cdot3\sqrt{5}\)
tương ứng A= 2; B = 3 căn 5
\(A^2+B^2=4+45=49\) (loại)
- xét \(6\sqrt{5}=3\cdot2\sqrt{5}\)
Tương ứng A= 3 ; B= 2 căn 5
\(A^2+B^2=9+20=29\) (ơn giời cậu đây rồi!!)
Vì tổng \(A^2+B^2\) là số nguyên nên ta nghĩ đến việc tách 2AB ra các thừa số có bình phương là số nguyên (chứ không nghĩ đến phân số)
+ Tìm được A=3, B=2 căn 5 sau đó viết biểu thức dưới dạng bình phương 1 tổng/hiệu như sau:
\(\sqrt{29-12\sqrt{5}}-\sqrt{29+12\sqrt{5}}=\sqrt{\left(2\sqrt{5}-3\right)^2}-\sqrt{\left(2\sqrt{5}+3\right)^2}\)
sau đó bạn làm tương tự như 2 câu mẫu bên dưới
* Chú ý nên xếp số lớn hơn là số bị trừ, để khỏi bị nhầm và khỏi mất công xét dấu biểu thức khi phá dấu giá trị tuyệt đối
a) \(\sqrt{14+6\sqrt{5}}+\sqrt{14-6\sqrt{5}}=\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{\left(3-\sqrt{5}\right)^2}=\left|3+\sqrt{5}\right|+\left|3-\sqrt{5}\right|=3+\sqrt{5}+3-\sqrt{5}=6\)b) \(\sqrt{6+4\sqrt{2}}+\sqrt{11-6\sqrt{2}}=\sqrt{\left(2+\sqrt{2}\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}=\left|2+\sqrt{2}\right|+\left|2-\sqrt{2}\right|=2+\sqrt{2}+2-\sqrt{2}=4\)
tớ ko chép lại đề, kí hiệu nhé
(1) \(=\left(\sqrt{6}-\sqrt{5}\right)^2-\sqrt{\left|\sqrt{6}+\sqrt{5}\right|^2}=\left(\sqrt{6}-\sqrt{5}\right)^2-\left(\sqrt{6}+\sqrt{5}\right)=1-2\sqrt{30}-\sqrt{6}-\sqrt{5}\)
ai ra đề mà để đáp án dài thế này mất thẩm mĩ quá!!!
(2) \(=\sqrt{\left|\sqrt{5}+\sqrt{3}\right|^2}-\sqrt{\left|\sqrt{5}-\sqrt{3}\right|^2}=\left(\sqrt{5}+\sqrt{3}\right)-\left(\sqrt{5}-\sqrt{3}\right)=2\sqrt{3}\)
(3) \(=\sqrt{\left|\sqrt{7}+2\right|^2}-\sqrt{\left|3-\sqrt{5}\right|^2}=\sqrt{7}+2-3+\sqrt{5}=\sqrt{7}+\sqrt{5}-1\)
lại thêm 1 phép tính không đẹp....
(4) \(=\sqrt{\left|3\sqrt{2}-2\right|^2}-\sqrt{\left|3\sqrt{2}+1\right|^2}=3\sqrt{2}-2-3\sqrt{2}-1=-3\)
(5) \(=\sqrt{\left|2\sqrt{3}-1\right|^2}+\sqrt{\left|2\sqrt{3}-3\right|^2}=2\sqrt{3}-1+2\sqrt{3}-3=4\sqrt{3}-4\)
kiểm tra lại kết quả nhé ^^! Cảm ơn!
a) Có \(\sqrt{2}< \sqrt{2,25}=1,5\)
\(\sqrt{6}< \sqrt{6,25}=2,5\);
\(\sqrt{12}< \sqrt{12,25}=3,5\);
\(\sqrt{20}< \sqrt{20,25}=4,5\)
=> \(P=\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}< 1,5+2,5+3,5+4,5=12\)
Vậy P < 12
Answer:
ý a, tham khảo bài làm của @xyzquynhdi
\(\sqrt{2}+\sqrt{3}+\sqrt{5}\)
\(\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}\)
\(=\sqrt{10+2\sqrt{6}+2\sqrt{10}+2\sqrt{15}}\)
\(=\sqrt{\left(\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2+\left(\sqrt{5}\right)^2+2\sqrt{2}\sqrt{3}+2\sqrt{2}\sqrt{5}+2\sqrt{3}\sqrt{5}}\)
\(=\sqrt{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)^2}=\sqrt{2}+\sqrt{3}+\sqrt{5}\)
Lời giải:
a)
\(\sqrt{6+\sqrt{24}+\sqrt{12}+\sqrt{8}}-\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{6+2\sqrt{6}+2\sqrt{3}+2\sqrt{2}}-\sqrt{3+1-2\sqrt{3}}\)
\(=\sqrt{(3+1+2\sqrt{3})+2+(2\sqrt{6}+2\sqrt{2})}-\sqrt{(\sqrt{3}-\sqrt{1})^2}\)
\(=\sqrt{(\sqrt{3}+1)^2+2\sqrt{2}(\sqrt{3}+1)+2}-\sqrt{(\sqrt{3}-1)^2}\)
\(=\sqrt{(\sqrt{3}+1+\sqrt{2})^2}-\sqrt{(\sqrt{3}-1)^2}\)
\(=\sqrt{3}+1+\sqrt{2}-(\sqrt{3}-1)=2+\sqrt{2}\)
b)
\(\left(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\right)(\sqrt{6}+11)\)
\(=\left(\frac{15(\sqrt{6}-1)}{(\sqrt{6}+1)(\sqrt{6}-1)}+\frac{4(\sqrt{6}+2)}{(\sqrt{6}-2)(\sqrt{6}+2)}-\frac{12(3+\sqrt{6})}{(3-\sqrt{6})(3+\sqrt{6})}\right)(\sqrt{6}+11)\)
\(=\left(\frac{15(\sqrt{6}-1)}{5}+\frac{4(\sqrt{6}+2)}{2}-\frac{12(3+\sqrt{6})}{3}\right)(\sqrt{6}+11)\)
\(=[3(\sqrt{6}-1)+2(\sqrt{6}+2)-4(3+\sqrt{6})](\sqrt{6}+11)\)
\(=(\sqrt{6}-11)(\sqrt{6}+11)=6-11^2=-115\)
Lời giải:
a)
\(\sqrt{6+\sqrt{24}+\sqrt{12}+\sqrt{8}}-\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{6+2\sqrt{6}+2\sqrt{3}+2\sqrt{2}}-\sqrt{3+1-2\sqrt{3}}\)
\(=\sqrt{(3+1+2\sqrt{3})+2+(2\sqrt{6}+2\sqrt{2})}-\sqrt{(\sqrt{3}-\sqrt{1})^2}\)
\(=\sqrt{(\sqrt{3}+1)^2+2\sqrt{2}(\sqrt{3}+1)+2}-\sqrt{(\sqrt{3}-1)^2}\)
\(=\sqrt{(\sqrt{3}+1+\sqrt{2})^2}-\sqrt{(\sqrt{3}-1)^2}\)
\(=\sqrt{3}+1+\sqrt{2}-(\sqrt{3}-1)=2+\sqrt{2}\)
b)
\(\left(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\right)(\sqrt{6}+11)\)
\(=\left(\frac{15(\sqrt{6}-1)}{(\sqrt{6}+1)(\sqrt{6}-1)}+\frac{4(\sqrt{6}+2)}{(\sqrt{6}-2)(\sqrt{6}+2)}-\frac{12(3+\sqrt{6})}{(3-\sqrt{6})(3+\sqrt{6})}\right)(\sqrt{6}+11)\)
\(=\left(\frac{15(\sqrt{6}-1)}{5}+\frac{4(\sqrt{6}+2)}{2}-\frac{12(3+\sqrt{6})}{3}\right)(\sqrt{6}+11)\)
\(=[3(\sqrt{6}-1)+2(\sqrt{6}+2)-4(3+\sqrt{6})](\sqrt{6}+11)\)
\(=(\sqrt{6}-11)(\sqrt{6}+11)=6-11^2=-115\)
\(P=\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\\ =\sqrt{9+2+6\sqrt{2}}-\sqrt{9+2-6\sqrt{2}}\\ =\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\\ =3+\sqrt{2}-3+\sqrt{2}\\ =2\sqrt{2}\)
\(Q=\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\\ =\sqrt{9+8+6\sqrt{8}}+\sqrt{9+8-6\sqrt{8}}\\ =\sqrt{\left(3+\sqrt{8}\right)^2}+\sqrt{\left(3-\sqrt{8}\right)^2}\\ =3+\sqrt{8}+3-\sqrt{8}\\ =6\)
a) \(P=\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}=\sqrt{9+2.3.\sqrt{2}+2}-\sqrt{9-2.3.\sqrt{2}+2}=\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}=\left|3+\sqrt{2}\right|-\left|3-\sqrt{2}\right|=3+\sqrt{2}-3+\sqrt{2}=2\sqrt{2}\)
b) \(Q=\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}=\sqrt{9+2.3.2\sqrt{2}+8}+\sqrt{9-2.3.2\sqrt{2}+8}=\sqrt{\left(3+2\sqrt{2}\right)^2}+\sqrt{\left(3-2\sqrt{2}\right)^2}=\left|3+2\sqrt{2}\right|+\left|3-2\sqrt{2}\right|=3+2\sqrt{2}+3-2\sqrt{2}=6\)