Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA CÓ :
\(B=\frac{2010+2011+2012}{2011+2012+2013}\)
\(B=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)
VÌ : \(\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\)
\(\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\)
\(\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\)
=> A > B
VẬY , A > B
Mình tự hỏi. sao banh biết rồi còn đăng lên làm gì??????????
Ta có \(B=\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{2013}+\frac{2012}{2013}=\frac{2011+2012}{2013}\)
Lại có: \(\frac{2011+2012}{2013}>\frac{2011+2012}{2012+2013}\) ( ngoặc 2 dòng này lại nhé dòng này và dòng trên)
\(\Rightarrow B>A\)
ta có: \(\frac{2011}{2012}>\frac{2011}{2012+2013};\frac{2012}{2013}>\frac{2012}{2013+2012}.\)
\(\Rightarrow A>\frac{2011}{2012+2013}+\frac{2012}{2013+2012}=\frac{2011+2012}{2012+2013}=B\)
....
Ta có \(\frac{2011}{2012}>\frac{2011}{2012+2013}\)
\(\frac{2012}{2013}>\frac{2012}{2012+2013}\)
CỘNG VẾ THEO VẾ,TA CÓ:
\(\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{2012+2013}+\frac{2012}{2012+2013}\)
\(\Rightarrow\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011+2012}{2012+2013}\)
\(\Rightarrow A>B\)
Vậy A>B
Ta có
\(\frac{A^{2011}}{A^{2012}}=\frac{A^{2012}}{A^{2103}}=\frac{A}{A^2}\)
=> \(\frac{A^{2011}}{A^{2012}}+\frac{A^{2012}}{A^{2013}}=\frac{2A}{A^2}\)
\(\frac{A^{2011+2012}}{A^{2012+2013}}=\frac{A^{4023}}{A^{4025}}=\frac{1}{A^2}\)
=> \(\frac{A^{2011+2012}}{A^{2012+2013}}< \frac{A^{2011}}{A^{2012}}+\frac{A^{2012}}{A^{2013}}\)
Gọi 2011 là a
2012 là b;2013 là c
=>\(A=\frac{2011}{2012}+\frac{2012}{2013}=\frac{a}{b}+\frac{b}{c}\);\(B=\frac{2011+2013}{2012+2013}=\frac{a+c}{b+c}\)
=>\(A=\frac{a}{b}+\frac{b}{c}=\frac{ac+b^2}{bc}\)\(=\frac{\left(ac+b^2\right).\left(b+c\right)}{bc.\left(b+c\right)}\);\(B=\frac{a+c}{b+c}=\frac{\left(a+c\right).bc}{bc.\left(b+c\right)}\)
b+c>a+c;b2+ac>bc
Vậy A>B
\(\frac{2010}{2011}\)> \(\frac{2010}{2011+2012+2013}\)
\(\frac{2011}{2012}\)> \(\frac{2011}{2011+2012+2013}\)
\(\frac{2012}{2013}\)> \(\frac{2012}{2011+2012+2013}\)
=> \(\frac{2010}{2011}\)+ \(\frac{2011}{2012}\)+ \(\frac{2012}{2013}\)> \(\frac{2010+2011+2012}{2011+2012+2013}\)
=> P > Q
P = \(\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}\)
Q = \(\frac{2010+2011+2012}{2011+2012+2013}\) = \(\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)
Vì: \(\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\)
\(\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\)
\(\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\)
=> \(\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}>\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)
P > Q
\(\frac{2011+2012}{2012+2013}=\frac{2011}{2012+2013}+\frac{2012}{2012+2013}<\frac{2011}{2012}+\frac{2012}{2013}\)
Tách A ra thành 2 phân số cùng tử(dễ thôi).
So sánh mỗi phân số với 1 phân số tương ứng ở B.
=>A<B.
Vậy A<B.
Ta có: \(A>1\)
\(B<1\)
=> \(A>B\)
Tích mk nha
A=\(\frac{2011}{2012+2013}+\frac{2012}{2012+2013}\)
B=\(\frac{2011}{2012}+\frac{2012}{2013}\)
mà \(\frac{2011}{2012+2013}<\frac{2011}{2012};\frac{2012}{2012+2013}<\frac{2012}{2013}\)
nên A <B