Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tương tự như câu này mình làm giúp ĐỖ KHÁNH LINH rồi. Cậu nhớ tìm hiểu rồi làm nhé! Chỉ cần vận dụng vào đó thôi.
2006.A = 2006. 20062006 + 1 = 20062007 + 2006 = 20062007 + 1 + 2005 = 20062007 + 1 + 2005 = 1 + 2005
20062007 + 1 20062007 + 1 20062007 + 1 20062007 + 1 20062007 + 1 20062007 + 1 Sau đó,với phần B bạn làm tương tự thì sẽ ra A > B
Đề phải là so sánh chứ bạn !
Có : 2006A = 2006^2006+2006/2006^2006+1 = 1 + 2005/2006^2006+1
2006B = 2006^2007+2006/2006^2007+1 = 1 + 2005/2006^2007+1
Vì : 2006^2006 < 2006^2007 => 2006^2006+1 < 2006^2007+1
=> 2005/2006^2006+1 > 2005/2006^2007+1
=> 2016A > 2016B
=> A > B
Tk mk nha
vì \(\frac{10^{2006}+1}{10^{2007}+1}\)<1
tc:B=\(\frac{10^{2006}+1}{10^{2007}+1}\)<\(\frac{10^{2006}+1+9}{10^{2007}+1+9}\)=\(\frac{10^{2006}+10}{10^{2007}+10}\)=\(\frac{10\left(10^{2005}+1\right)}{10\left(10^{2006}+1\right)}\)=\(\frac{10^{2005}+1}{10^{2006}+1}\)=A
=>B<A
A<B
quy tắc: a/b <1 thì a/b<a+m/b+m
a/b>1 thì a/b> a+m/b+m
Đặt biểu thức là A ta có:
\(A=\frac{\frac{2006}{2}+\frac{2006}{3}+\frac{2006}{4}+...+\frac{2006}{2007}}{\frac{2006}{1}+\frac{2005}{2}+\frac{2004}{3}+...+\frac{1}{2006}}\)
\(\Rightarrow A=\frac{2006.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}\right)}{1+\left(1+\frac{2005}{2}\right)+\left(1+\frac{2004}{3}\right)+...+\left(1+\frac{1}{2006}\right)}\)
\(\Rightarrow A=\frac{2006.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}\right)}{1+\frac{2007}{2}+\frac{2007}{3}+...+\frac{2007}{2006}}\)
\(\Rightarrow A=\frac{2006.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}\right)}{2007.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2006}+\frac{1}{2007}\right)}\)
\(\Rightarrow A=\frac{2006}{2007}\)
Ta có:
\(2006A=\dfrac{2006^{2007}+2016}{2006^{2007}+1}=1+\dfrac{2005}{2006^{2007}+1}\)
\(2006B=\dfrac{2006^{2006}+2006}{2006^{2006}+1}=1+\dfrac{2005}{2006^{2006}+1}\)
Do \(\dfrac{2005}{2006^{2006}+1}>\dfrac{2005}{2006^{2007}+1}\Rightarrow1+\dfrac{2005}{2006^{2006}+1}>1+\dfrac{2005}{2006^{2007}+1}\)
\(\Rightarrow2006A< 2006B\Rightarrow A< B\)
Mình sẽ giải cách ngắn hơn cách bạn đạt nha:
Nếu:
\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)
\(A=\dfrac{2006^{2006}+1}{2006^{2007}+1}< 1\)
\(A< \dfrac{2006^{2006}+1+2005}{2006^{2007}+1+2005}\Rightarrow A< \dfrac{2006^{2006}+2006}{2006^{2007}+2006}\Rightarrow A< \dfrac{2006\left(2006^{2005}+1\right)}{2006\left(2006^{2006}+1\right)}\Rightarrow A< \dfrac{2006^{2005}+1}{2006^{2006}+1}=B\)\(A< B\)