\(\frac{100^{10}+1}{100^{10}-1}\) và B=\(\frac{100^{10}-1}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2018

+> Ta đi chứng minh tính chất \(\frac{a}{b}>1\)thì \(\frac{a}{b}>\frac{a+c}{b+c}\)

\(\frac{a}{b}>1\Rightarrow a>b\)

\(\Rightarrow ac>bc\) \(\Rightarrow ac+ab>bc+ab\)\(\Rightarrow a\left(b+c\right)>b\left(a+c\right)\)\(\Rightarrow\frac{a}{b}>\frac{a+c}{b+c}\)\(\left(1\right)\)

+> Aps dụng tính chất (1) vào b thức B ta có:

\(B=\frac{100^{10}-1}{100^{10}-3}>\frac{100^{10}-1+2}{100^{10}-3+2}=\frac{100^{10}+1}{100^{10}-1}\)

\(\Rightarrow B>\frac{100^{10}+1}{100^{10}-1}\)

\(\Rightarrow B>A\)

Vậy \(B>A\)

3 tháng 5 2018

hu hu ai trả lời giúp mình với 

20 tháng 4 2016

ta có:\(A=\frac{100^{10}+1}{100^{10}-1}=\frac{100^{10}-1+2}{100^{10}-1}=\frac{100^{10}-1}{100^{100}-1}+\frac{2}{100^{10}-1}=1+\frac{2}{100^{10}-1}\)

\(B=\frac{100^{10}-1}{100^{10}-3}=\frac{100^{10}-3+2}{100^{10}-3}=\frac{100^{10}-3}{100^{10}-3}+\frac{2}{100^{10}-3}=1+\frac{2}{100^{10}-3}\)

vì 10010-1>10010-3

\(\Rightarrow\frac{2}{100^{10}-1}<\frac{2}{100^{10}-3}\)

=>A<B

25 tháng 3 2017

mk giải cho câu A rồi tự suy mấy câu khác nhé!

ta có : A = 10^8 + 2/10^8 - 1

     => A = 10^8 - 1 + 3/10^8 - 1

     => A = 1+ 3/10^8 - 1

          B = 10^8/10^8 - 3

    =>  B = 10^8 - 3 + 3/10^8 - 3

    =>  B = 1+ 3/10^8 - 3

vì 3/10^8 - 1 < 3/10^8 - 3

=> 1 + 3/10^8 - 1 < 1 + 3/10^8 - 3

=> A < B

vậy A < B

cách này cô dạy mk đó

1 tháng 11 2016

giờ trả lời còn được tick ko bạn

4 tháng 11 2016

được mà bn

28 tháng 11 2017

a) Với a>b thì => (a+n).b=ab+bn>ab+an=a(b+n)=>(a+n).b>a.(b+n)

=> a+nb+n >ab 

Với b>a thì chứng minh tương tự ta được a+nb+n <ab 

Với a=b thì chứng minh tương tự ta được a+nb+n =ab

28 tháng 11 2017

\(B=\frac{10^{10}+1}{10^{11}+1}=\frac{10^{11}+10}{10^{12}+10}=\frac{10^{11}-1+11}{10^{12}-1+11}< \frac{10^{11}-1}{10^{12}-1}=A\)=> A>B

8 tháng 2 2020

Câu 1 :

Ta có : \(A=\frac{10^{100}+1}{10^{101}+1}\)

\(\Rightarrow10A=\frac{10^{101}+10}{10^{101}+1}=\frac{10^{101}+1+9}{10^{101}+1}=1+\frac{9}{10^{101}+1}\)

Ta có : \(B=\frac{10^{101}+1}{10^{102}+1}\)

\(10B=\frac{10^{102}+10}{10^{102}+1}=\frac{10^{102}+1+9}{10^{102}+1}=1+\frac{9}{10^{102}+1}\)

Vì 10101+1<10102+1 

\(\Rightarrow\frac{9}{10^{101}+1}>\frac{9}{10^{102}+1}\)

\(\Rightarrow1+\frac{9}{10^{101}+1}>1+\frac{9}{10^{102}+1}\)

\(\Rightarrow\)10A>10B

\(\Rightarrow\)A>B

Vậy A>B.

8 tháng 2 2020

Câu 2 :

Ta có : \(E=\frac{2000+2001}{2001+2002}=\frac{2000}{2001+2002}+\frac{2001}{2001+2002}\)

Vì 2001<2001+2002 và 2002<2001+2002

\(\Rightarrow\hept{\begin{cases}\frac{2000}{2001}>\frac{2000}{2001+2002}\\\frac{2001}{2002}>\frac{2001}{2001+2002}\end{cases}}\)

\(\Rightarrow C>E\)

Vậy C>E.

23 tháng 4 2017

Ai trả lời giúp mik nha

9 tháng 3 2018

Có lời giải đàng hoàng nha

23 tháng 2 2020

Ta thấy : \(\frac{1}{11}>\frac{1}{100},\frac{1}{12}>\frac{1}{100},...,\frac{1}{100}=\frac{1}{100}\)

\(\Rightarrow\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{90}{100}=\frac{9}{10}\)

\(\Rightarrow\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}>\frac{9}{10}+\frac{1}{10}=1\)

Do đó : \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}>1\)