K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2018

* Cách 1 : 

Ta có : 

\(5A=\frac{5^{61}+5}{5^{61}+1}=\frac{5^{61}+1+4}{5^{61}+1}=\frac{5^{61}+1}{5^{61}+1}+\frac{4}{5^{61}+1}=1+\frac{4}{5^{61}+1}\)

\(5B=\frac{5^{62}+5}{5^{62}+1}=\frac{5^{62}+1+4}{5^{62}+1}=\frac{5^{62}+1}{5^{62}+1}+\frac{4}{5^{62}+1}=1+\frac{4}{5^{62}+1}\)

Vì \(\frac{4}{5^{61}+1}>\frac{4}{5^{62}+1}\) nên \(1+\frac{4}{5^{61}+1}>1+\frac{4}{5^{62}+1}\) 

\(\Rightarrow\)\(5A>5B\) hay \(A>B\)

Vậy \(A>B\)

Chúc bạn học tốt ~ 

4 tháng 4 2019

\(A=\frac{5^{60}+1}{5^{61}+1}\)

\(5A=\frac{5(5^{60}+1)}{5^{61}+1}=\frac{5^{61}+5}{5^{61}+1}=\frac{5^{61}+1+4}{5^{61}+1}=1+\frac{4}{5^{61}+1}\)                            \((1)\)

\(B=\frac{5^{61}+1}{5^{62}+1}\)

\(5B=\frac{5(5^{61})+1}{5^{62}+1}=\frac{5^{62}+5}{5^{62}+1}=\frac{5^{62}+1+4}{5^{62}+1}=1+\frac{4}{5^{62}+1}\)                          \((2)\)

Từ 1 và 2 \(\Rightarrow1+\frac{4}{5^{61}+1}>1+\frac{4}{5^{62}+1}\)

\(\Rightarrow5A>5B\)

Hay \(A>B\)

Vậy : ...

DD
7 tháng 12 2021

\(A=1+5+5^2+5^3+...+5^{59}\)

\(=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{57}+5^{58}+5^{59}\right)\)

\(=\left(1+5+5^2\right)+5^3\left(1+5+5^2\right)+...+5^{57}\left(1+5+5^2\right)\)

\(=31\left(1+5^3+...+5^{57}\right)\)chia hết cho \(31\).

\(A=1+5+5^2+5^3+...+5^{59}\)

\(5A=5+5^2+5^3+5^4+...+5^{60}\)

\(5A-A=\left(5+5^2+5^3+5^4+...+5^{60}\right)-\left(1+5+5^2+5^3+...+5^{59}\right)\)

\(4A=5^{60}-1\)

\(A=\frac{5^{60}-1}{4}< \frac{5^{60}}{4}\).

26 tháng 8 2015

\(B=\frac{31}{2}.\frac{32}{2}.....\frac{60}{2}\)

\(B=\left(31.32.33....60\right).\frac{1.2.3....60}{2^{30.\left(1.2.3...30\right)}}\)

\(B=\left(1.3.5.....59\right).\frac{2.4.6.....60}{2.4.6....60}=1.3.5...59\)

=> \(B=A\)

18 tháng 3 2018

sai

ta thấy tên tử và dưới mẫu = nhau

=>A=B=1

18 tháng 3 2018

không phải đâu Hoàng Phú Huy, nhìn kĩ lại đi

13 tháng 5 2022

A=0,3807120476
B=0,5
suy ra A<B

25 tháng 5 2018

ta có: \(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^9}=1\)

mà \(1+3+3^2+...+3^9>1+3+3^2+...+3^8\)

\(\Rightarrow B=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}>1\)

\(\Rightarrow A< B\)

25 tháng 5 2018

Câu hỏi của nguyen van nam - Toán lớp 6 - Học toán với OnlineMath

AH
Akai Haruma
Giáo viên
15 tháng 4 2023

Lời giải:

$A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2021}}$

$2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2020}}$

$\Rightarrow 2A-A=1-\frac{1}{2^{2021}}$

$\Rightarrow A=1-\frac{1}{2^{2021}}

$B=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{60}=\frac{4}{5}=1-\frac{1}{5}$

Hiển nhiên $\frac{1}{2^{2021}}< \frac{1}{5}\Rightarrow 1-\frac{1}{2^{2021}}> 1-\frac{1}{5}$

$\Rightarrow A> B$