Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
Ta có :
\(2^{255}=\left(2^{17}\right)^{15}\) \(>\left(2^{16}\right)^{15}=\left(2^8\right)^{30}=256^{30}\)
\(3^{150}=\left(3^{10}\right)^{15}=\left(3^5\right)^{30}=243^{30}\)
\(\text{Vì }256^{30}>243^{30}\text{ }\Rightarrow\text{ }2^{255}>3^{150}\)
Ta có:
\(C=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)
\(C=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(C=\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
\(C=\frac{1}{100}-\frac{99}{100}\)
\(C=\frac{-49}{50}\)
a) \(2^{225}=\left(2^3\right)^{75}=8^{75}\)
\(3^{150}=\left(3^2\right)^{75}=9^{75}\)
vì 8 < 9 và 75 = 75
=> 875 < 975
=> 2225 < 3150
b) \(2^{91}>2^{90}=\left(2^5\right)^{18}=32^{18}>25^{18}=5^{36}>5^{35}\)
\(\Rightarrow2^{91}>5^{35}\)
c) \(5^{300}=\left(5^3\right)^{100}=125^{100}\)
\(3^{500}=\left(3^5\right)^{100}=243^{100}\)
Vì 125 < 243 mà 100 = 100
=> \(5^{300}< 3^{500}\)
Bài nì lp 6 lm nhìu rùi mà
Ta có:
+ 2225 = (23)75 = 875
3150 = (32)75 = 975
Vì 875 < 975
=> 3225 < 3150
+ 291 = (213)7 = 81927
535 = (55)7 = 31257
Vì 81927 > 31257
=> 291 > 535
+ 5300 = (53)100 = 125100
3500 = (35)100 = 243100
Vì 125100 < 243100
=> 5300 < 3500
1 , (3/7)^21 :(9/49)^6
= (3/7)^21 : [(3/7)^2]^6
= (3/7)^21 : (3/7)12
= (3/7)^9
2, a) 291 và 535
ta có: 291 < 290 = (25)18 = 3218
lại có: 3218 > 2518 = (52)18 = 536 > 535
vậy 291 > 535
b) 34000 và 92000
ta có: 34000 = (34)1000 = 811000
92000 = (92)1000 = 811000
vậy 34000 = 92000
c) 2332 và 3223
ta có: 2332 < 2333 = (23)111 = 8111
3223 > 3222 = (32)111 = 9111
mà 8111 < 9111
vậy 2332 < 3223
3. n150 = (n2 )75 < 5225 = (53)75 => n2 < 53 = 125 => n2 lớn nhất = 121 => n =11.
4. M=22010-(22009+22008+22007+...+21+20)
M=22010-22009-22008-22007-...-21-20
=>2M=22011-22010-22009-22008-...-22-21
=>2M-M=22011-22010-22009-22008-...-22-21-(22010-22009-22008-22007-...-21-20)
=>M=22011-22010-22009-22008-...-22-21-22010+22009+22008+22007+...+21+20
=22011-22010-22010+20
=22011-2.22010+1
=22011-22011+1
=1
Vậy M=1
\(Bai1:\left(\frac{3}{7}\right)^{21}:\left(\frac{9}{49}\right)^6=\frac{3^{21}}{7^{21}}:\frac{\left(3^2\right)^6}{\left(7^2\right)^6}=\frac{3^{21}}{7^{21}}:\frac{3^{12}}{7^{12}}=\frac{3^{21}}{7^{21}}.\frac{7^{12}}{3^{12}}=\frac{3^9}{7^9}\)
Bài 2: a) 291 = (213)7 = 81927
535 = (55)7 = 31257
Vì 81927 > 31257
=> 291 > 535
b) 34000 = (32)2000 = 92000
=> 34000 = 92000
c) 2332 < 2333 = (23)111 = 8111
3223 > 3222 = (32)111 = 9111
Vì 8111 < 9111
=> 2332 < 3223
Bài 3: n150 < 5225
=> (n2)75 < (53)75
=> n2 < 53
=> n2 < 125
Mà n lớn nhất => n2 lớn nhất => n2 = 121
=> n = 11
Bài 4: Đặt A = 22009 + 22008 + ... + 21 + 20
A = 20 + 21 + ... + 22008 + 22009
2A = 21 + 22 + ... + 22009 + 22010
2A - A = (21 + 22 + ... + 22009 + 22010) - (20 + 21 + ... + 22008 + 22009)
A = 22010 - 20
A = 22010 - 1
=> M = 22010 - (22010 - 1)
M = 22010 - 22010 + 1
M = 1
2332=(23)110x22=8110x4
3223=(32)110x33=9110x27
Vì 9110x27 > 8110x4 =>2332 < 3223
Ta có:
2332 < 2333 = (23)111 = 8111
3223 > 3222 = (32)111 = 9111
Vì 2332 < 8111 < 9111 < 3223
=> 2332 < 3223
Vừa nãy mình nhầm sorry
Cách 2 : b) Ta có: 2225 = (23)75 = 875 (1)
3150 = (32)75 = 975 (2)
Từ (1) và (2) => 2225 < 3150
Ta có: 2300 = (23)100 = 8100 (1)
3200 = (32)100 = 9100 (2)
Từ (1) và (2) ta có: 8100 < 9100 = > 2300 < 3200
a) \(2^{225}\)= \(\left(2^3\right)^{75}\)= \(8^{75}\)
\(3^{150}\)= \(\left(3^2\right)^{75}\)= \(9^{75}\)
Vì \(8^{75}\)< \(9^{75}\)
Nên \(2^{225}\)< \(3^{150}\)
b) \(2^{332}\)< \(2^{333}\)= \(\left(2^3\right)^{11}\)= \(8^{11}\)
\(3^{223}\)> \(3^{222}\)= \(\left(3^2\right)^{11}\)= \(9^{11}\)
Vì \(8^{11}\)< \(9^{11}\)
Nên : \(2^{332}\)< \(3^{223}\)
cảm ơn bạn rất nhìu nha kb nhé