Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(10A=\frac{10^{12}-10}{10^{12}-1}=\frac{10^{12}-1-9}{10^{12}-1}=1-\frac{9}{10^{12}-1}\)
\(10B=\frac{10^{11}+10}{10^{11}+1}=\frac{10^{11}+1+9}{10^{11}+1}=1+\frac{9}{10^{11}+1}\)
Vì \(\frac{9}{10^{12}-1}< \frac{9}{10^{11}+1};1=1\Rightarrow1-\frac{9}{10^{12}-1}< 1+\frac{9}{10^{11}+1}\Rightarrow\frac{10^{11}-1}{10^{12}-1}< \frac{10^{10}+1}{10^{11}+1}\)
Suy ra\(A< B\)
\(A=\frac{10^{11}-1}{10^{12}-1}\) => \(10A=\frac{10^{12}-10}{10^{12}-1}=\frac{10^{12}-1-9}{10^{12}-1}\)
=> \(10A=1-\frac{9}{10^{12}-1}\)=> 10A < 1
\(B=\frac{10^{10}+1}{10^{11}+1}\) => \(10B=\frac{10^{11}+10}{10^{11}+1}=\frac{10^{11}+1+9}{10^{11}+1}\)
=> \(10B=1+\frac{9}{10^{11}+1}\)=> 10B > 1
=> 10B > 10A => B > A
ĐS: B > A
a)A=(1996+2).(2000-2)
A=1996.2000-1996.2+2000.2-4
A=1996.2000+4
=>A>B
Theo mình thì thế này :
A=25.33-10=25.31+50-10=25.31+40
b=31.26+10=31.25+31+10=31.25+41
31.25+40<31.25+41
=>A<b
a) Với a>b thì => (a+n).b=ab+bn>ab+an=a(b+n)=>(a+n).b>a.(b+n)
=> a+nb+n >ab
Với b>a thì chứng minh tương tự ta được a+nb+n <ab
Với a=b thì chứng minh tương tự ta được a+nb+n =ab
\(B=\frac{10^{10}+1}{10^{11}+1}=\frac{10^{11}+10}{10^{12}+10}=\frac{10^{11}-1+11}{10^{12}-1+11}< \frac{10^{11}-1}{10^{12}-1}=A\)=> A>B
Bài 1 :
a) ( x - 11 ) ( 2x - 16 ) = 0
\(\Rightarrow\orbr{\begin{cases}x-11=0\\2x-16=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=11\\x=8\end{cases}}\)
b) ( x + 1 ) ( x - 2 ) = 0
\(\Rightarrow\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
c) x ( x + 1999 ) = 0
\(\Rightarrow\orbr{\begin{cases}x=0\\x+1999=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=-1999\end{cases}}\)
Ta co:
B=\(\frac{10^{30}+1}{10^{31}+1}\)<\(\frac{10^{30}+1+99}{10^{31}+1+99}\)=\(\frac{10^{30}+100}{10^{31}+100}\)=\(\frac{10^{10}\cdot\left(10^{20}+1\right)}{10^{10}\cdot\left(10^{21}+1\right)}\)=\(\frac{10^{20}+1}{10^{21}+1}\)=A
Vay A<B
B>A
VÌ 31.26>25.3 =>31.26+10>25.3-10
cảm ơn bạn