Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=2011^{2012}-2011^{2011}=2011^{2011}.\left(2011-1\right)\)
\(B=2011^{2013}-2011^{2012}=2011^{2012}.\left(2012-1\right)\)
Vì \(2011^{2011}< 2011^{2012}\Rightarrow A< B\)
A = 2011^2012 - 2011^ 2011 = 2011^2011 . ( 2011 - 1 ) = 2011^2011 . 2010
B = 2011^2013 - 2011^2012 = 2011^2012 . ( 2011 - 1 ) = 2011^2012 . 2010
Vì 2011^2011 < 2012^2011
=> A < B
Ta có A = 20112012 - 20112011 = 20112011 . (2011 - 1) = 20112011 . 2010
B= 20112013 - 20112012 = 20112012 . (2011 - 1) = 20112012 . 2010
Vì 20112012 >20112011 nen 20112011 . 2010 < 20112012 . 2010 hay A<B
A=20112012-20112011
A=20112011.(2011-1)
A=20112011.2010
B=20112013-20112012
B=20112012(2011-1)
B=20112012.2010
=)B>A
2. TA CÓ: D=\(\frac{2011+2012}{2012+2013}\)
=\(\frac{2011}{2012+2013}+\frac{2012}{2012+2013}\)
VÌ 2012+2013>2012
MÀ \(\frac{2011}{2012+2013}<\frac{2011}{2012}\)(1)
VÌ 2012+2013>2013
MÀ \(\frac{2012}{2012+2013}<\frac{2012}{2013}\)(2)
TỪ (1) VÀ (2) \(\Rightarrow\frac{2011+2012}{2012+2013}<\frac{2011}{2012}+\frac{2012}{2013}\)
VẬY C > D
\(Q=\frac{2010+2011+2012}{2011+2012+2013}\)
\(Q=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)
Ta có :
\(\hept{\begin{cases}\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\\\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\\\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\end{cases}}\)
\(\Rightarrow P>Q\)
Ta có :
\(B=\frac{2011^{2013}+1}{2011^{2014}+1}< \frac{2011^{2013}+1+2010}{2011^{2014}+1+2010}=\frac{2011^{2013}+2011}{2011^{2014}+2011}=\frac{2011\left(2011^{2012}+1\right)}{2011\left(2011^{2013}+1\right)}=\frac{2011^{2012}+1}{2011^{2013}+1}\)
\(=A\)
Vậy \(A>B\)
Giúp tôi cái xin đấy