K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2023

\(A=2^0+2^1+2^2+...+2^{20}\)

\(2A=2^1+2^2+2^3+...+2^{21}\)

\(A=2^{21}-1\)

Vậy \(A>B\)

 
7 tháng 10 2017
a) < b) > d) < e) > f) >
11 tháng 1 2016

a/ 40^20=40^2.10=1600^10

3^30=3^3.10=27^10

vì 1600^10>27^10 nên 40^20>3^30

9 tháng 1 2016

a) 40^20=(4^2)^10=16^10

30^30=(3^3)^10=27610

Vì 16<27=>16^10<27^10 hay 4^20<3^30

b) mk chịu

c) Đặt A= 1/3+1/3^2+1/3^3+...+1/3^99

=>3A=3( 1/3+1/3^2+1/3^3+...+1/3^99)

=>3A=1+1/3+1/3^2+...+1/3^98

=>3A-A=(1+1/3+1/3^2+...+1/3^98)-(1/3+1/3^2+1/3^3+...+1/3^99)

=>2A=1-1/3^99

=>A=(1-1/3^99)/2

=>A=1/2 - (1/3^99)/2 < 1/2=>a<1/2

28 tháng 7 2017

sao bài 3 phần a hình như sai đề bài rồi đó

28 tháng 7 2017

1,2 dễ ko làm

3,

S = 1 + 2 + 22 + 23 + ... + 29

2S = 2 + 22 + 23 + 24 + ... + 210

2S - S = ( 2 + 22 + 23 + 24 + ... + 210 ) - ( 1 + 2 + 22 + 23 + ... + 29 )

S = 210 - 1

Mà 5 . 28 = ( 1 + 22 ) . 28 = 28 + 210 > 210 > 210 - 1

Vậy S < 5 . 28

P = 1 + 3 + 32 + 3+ ... + 320

3P = 3 + 32 + 3+ 34 +  ... + 321

3P - P = ( 3 + 32 + 3+ 34 +  ... + 321 ) - ( 1 + 3 + 32 + 3+ ... + 320 )

2P = 321 - 1

P = ( 321 - 1 ) : 2 < 321

Vậy P < 321

30 tháng 9 2015

  A=20+21+22+23+24+...+220
2A=21+22+23+24+25+...+221
  A=2A - A = (21+22+23+24+25+...+221) -(20+21+22+23+24+...+220)
  A=221-20
   
A=221-1
=>A < 221
 

24 tháng 6 2020

A = 1 + 31 + 32 + 33 + ... + 320

3A = 3( 1 + 31 + 32 + 33 + ... + 320 )

3A = 3 + 32 + 33 + 34 + ... + 321

3A - A = ( 3 + 32 + 33 + 34 + ... + 321 ) - ( 1 + 31 + 32 + 33 + ... + 320 )

=> 2A = 3 + 32 + 33 + 34 + ... + 321 - 1 - 31 - 32 - 33 + ... - 320

2A = 2 + 321

A = \(\frac{2+3^{21}}{2}\); B = \(\frac{3^{21}}{2}\)

Vì 2 + 321 > 321

=> \(\frac{2+3^{21}}{2}\)\(\frac{3^{21}}{2}\)hay A > B 

24 tháng 6 2020

A=1+ 31+32+33+...+320

3A = 3 + 3^2 + 3^3 + ... + 3^21

2A = 3^21 - 1

A = 3^21 - 1/2

3^21-1 < 3^21

=> 3^21-1/2 < 3^21/2

=> A < B

4 tháng 10 2020

a) A=2^43 và B=2^63 và A<B

b) A=3^53 và B=4^43 và A<B

4 tháng 10 2020

a,\(A=2^{10}.2^{21}.2^{12}< B=2^{21}.2^{19}.2^{23}\)

b,\(A=3^{10}.3^{21}.3^{22}< B=4^{20}.4^9.4^{14}\)

13 tháng 10 2019

Ta có:+) \(A=\frac{2^{19}-3}{2^{20}-3}\)

\(2A=\frac{2^{20}-6}{2^{20}-3}=\frac{\left(2^{20}-3\right)-3}{2^{20}-3}\)

\(2A=1-\frac{3}{2^{20}-3}\)

+)\(B=\frac{2^{20}-3}{2^{21}-3}\)

\(2B=\frac{2^{21}-6}{2^{21}-3}=\frac{\left(2^{21}-3\right)-3}{2^{21}-3}\)

\(2B=1-\frac{3}{2^{21}-3}\)

Vì \(2^{20}-3< 2^{21}-3\)nên \(1-\frac{3}{2^{20}-3}< 1-\frac{3}{2^{21}-3}\)

Hok tốt nha^^