K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2018

\(\frac{1}{3^2}< \frac{1}{2\cdot3}=\frac{1}{2}-\frac{1}{3},\frac{1}{4^2}< \frac{1}{3\cdot4}=\frac{1}{3}-\frac{1}{4},...,\frac{1}{2018^2}< \frac{1}{2017\cdot2018}=\frac{1}{2017}-\frac{1}{2018}\)

\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}=\frac{1}{2}-\frac{1}{2018}< \frac{1}{2}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}< \frac{1}{2^2}+\frac{1}{2}=\frac{1}{4}+\frac{1}{2}=\frac{3}{4}=75\%\)

16 tháng 4 2018

2A = 2+ 2^2+.......+2^2018+ 2^2019 / 2 ^2019 

2A-A = 2+2^2+.....+2^2019/ 2^2019 - 1=2+....+2^2018/ 2^2019 

A =2^2019-1 / 2^2019 < 1 

suy A< 1

16 tháng 4 2018

xin lỗi mình hơi nhầm : 2A - A = 2+2^2+....+2^2019/2^2019- 1+2+2^2 +.....+2^2019/2^2019

12 tháng 4 2019

= 1/2.2 + 1/3.3 + ... + 1/2018.2018

= ( 1/2 - 1/2) + (1/3 - 1/3) + ... + ( 1/2018 - 1/2018 )

=  0+0+0+0+...+0

=0 

75% = 7,5

7,5 > 0 ==>

A<B

11 tháng 6 2020

B = 75% => B = 3/4

Ta có :\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}=1-\frac{1}{2018}\)

Vì \(\frac{1}{2018}< \frac{1}{4}\Rightarrow1-\frac{1}{2018}>1-\frac{1}{4}\Rightarrow A>\frac{3}{4}\)=> A > B

11 tháng 6 2020

\(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2018^2}\)

\(B=75\%=\frac{3}{4}\)

Ta có:\(A=.......\)

         \(=\frac{1}{4}+\left(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\right)< \frac{1}{4}+\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\right)\)

                                                                                              \(=\frac{1}{4}+\frac{1}{2}-\frac{1}{2018}=\frac{3}{4}-\frac{1}{2018}< \frac{3}{4}\)

\(\Rightarrow A< B\)

4 tháng 5 2018

1) Đặt dãy trên là \(A\)

Theo bài ra ta có :

\(A=\frac{1}{3.3}+\frac{1}{4.4}+\frac{1}{5.5}+\frac{1}{6.6}+...+\frac{1}{100.100}\)

\(\Rightarrow A< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\left(đpcm\right)\)

2) \(A=\frac{5^{2018}-2017+1}{5^{2018}-2017}=\frac{5^{2018}-2017}{5^{2018}-2017}+\frac{1}{5^{2018}-2017}=1+\frac{1}{5^{2018}-2017}\)( 1 )

\(B=\frac{5^{2018}-2019+1}{5^{2018}-2019}=\frac{5^{2018}-2019}{5^{2018}-2019}+\frac{1}{5^{2018}-2019}=1+\frac{1}{5^{2018}-2019}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(A=1+\frac{1}{5^{2018}-2017}< 1+\frac{1}{5^{2018}-2019}=B\)

\(\Rightarrow A< B\)

Vậy \(A< B.\)

4 tháng 5 2018

1) Ta có B =

 \(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) < \(\frac{1}{1.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)\(\frac{99}{100}\)

=> B < 1 ( chứ không phải \(\frac{1}{2}\) bạn nhé)

Sai thì thôi chứ mk chỉ làm rờ thôi

5 tháng 5 2019

\(A=\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{2018^2}\)

\(< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{2017\cdot2018}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{2017}-\frac{1}{2018}\)

\(=1-\frac{1}{2018}\)

\(=\frac{2017}{2018}< \frac{3}{4}\)