Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\dfrac{\left(\sqrt{x^2+4}-2\right)\left(\sqrt{x^2+4}-2\right)\left(x+\sqrt{x}+1\right)\sqrt{x-2\sqrt{x}+1}}{x\left(x\sqrt{x}-1\right)}\\=\dfrac{\left(\left(\sqrt{x^2+4}\right)^2-4\right)\left(\left(x+\sqrt{x}+1\right)\sqrt{\left(x-1\right)^2}\right)}{x\left(x\sqrt{x}-1\right)}\\ =\dfrac{\left(x^2+4-4\right)\left(\left(x+\sqrt{x}+1\right)\left(x-1\right)\right)}{x\left(x\sqrt{x}-1\right)}\\ =\dfrac{x^2\left(x^3-1\right)}{x\left(x\sqrt{x}-1\right)}=x^2\sqrt{x}\)
b)
\(\left(\dfrac{\sqrt{a}-2}{\sqrt{a}+2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-2}\right)\left(\sqrt{a}-\dfrac{4}{\sqrt{a}}\right)\\ =\left(\dfrac{\left(\sqrt{a}-2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}-\dfrac{\left(\sqrt{a}+2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\right)\left(\dfrac{a}{\sqrt{a}}-\dfrac{4}{\sqrt{a}}\right)\\ =\left(\dfrac{a-4\sqrt{a}+4-a-4\sqrt{a}-4}{a-4}\right)\left(\dfrac{a-4}{\sqrt{a}}\right)\\ =\dfrac{-8\sqrt{a}}{a-4}\cdot\dfrac{a-4}{\sqrt{a}}=-8\)
c)
\(\left(\dfrac{\left(\sqrt{a}-1\right)}{\left(\sqrt{a}+1\right)}+\dfrac{\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)}\right)\left(1-\dfrac{1}{\sqrt{a}}\right)\\ =\left(\dfrac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}+\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\left(\dfrac{\sqrt{a}}{\sqrt{a}}-\dfrac{1}{\sqrt{a}}\right)\\ =\left(\dfrac{a-2\sqrt{a}+1+a+2\sqrt{a}+1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\left(\dfrac{\sqrt{a}-1}{\sqrt{a}}\right)\\ =\dfrac{2a+2}{a-1}\cdot\dfrac{\sqrt{a}-1}{\sqrt{a}}\\ =\dfrac{-2\left(a+1\right)}{a+1}\cdot\dfrac{\sqrt{a}-1}{\sqrt{a}}\\ =\dfrac{-2\left(\sqrt{a}-1\right)}{\sqrt{a}}\)
d)
\(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+x+1\\ =\dfrac{\sqrt{x}\left(\sqrt{x}^3-1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}^3+1\right)}{x-\sqrt{x}+1}+x+1\\ =\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+x+1\\ =\sqrt{x}\left(\sqrt{x}-1\right)-\sqrt{x}\left(\sqrt{x}+1\right)+x+1\\ =x-\sqrt{x}-x-\sqrt{x}+x+1\\ =x-2\sqrt{x}+1\\ =\left(x-1\right)^2\)
1. \(\dfrac{a+4\sqrt{a}+4}{\sqrt{a}+2}+\dfrac{4-a}{\sqrt{a}-2}\)
\(=\dfrac{\left(\sqrt{a}+2\right)^2}{\sqrt{a}+2}-\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\sqrt{a}-2}\)
\(=\sqrt{a}+2-\sqrt{a}-2\)
= 0
2: \(\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2-4\sqrt{xy}}{\sqrt{x}-\sqrt{y}}+\dfrac{y\sqrt{x}-x\sqrt{y}}{\sqrt{xy}}\)
\(=\sqrt{x}-\sqrt{y}+\sqrt{y}-\sqrt{x}=0\)
4: \(=\left(1+\sqrt{a}+\sqrt{a}+a\right)\cdot\dfrac{1}{1+\sqrt{a}}\)
\(=\dfrac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}+1}=\sqrt{a}+1\)
Bài 1:
a: ĐKXĐ: 2x+3>=0 và x-3>0
=>x>3
b: ĐKXĐ:(2x+3)/(x-3)>=0
=>x>3 hoặc x<-3/2
c: ĐKXĐ: x+2<0
hay x<-2
d: ĐKXĐ: -x>=0 và x+3<>0
=>x<=0 và x<>-3
a: \(A=\dfrac{-\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\sqrt{x}+3}-\dfrac{\left(\sqrt{x}-3\right)^2}{\sqrt{x}-3}-6\)
\(=-\sqrt{x}+3-\sqrt{x}+3-6=-2\sqrt{x}\)
b: \(\left(\dfrac{2\sqrt{x}}{x\sqrt{x}+x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right):\left(\dfrac{2\sqrt{x}}{\sqrt{x}+1}-1\right)\)
\(=\left(\dfrac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x+1\right)}-\dfrac{1}{\sqrt{x}+1}\right):\dfrac{2\sqrt{x}-\sqrt{x}-1}{\sqrt{x}+1}\)
\(=\dfrac{2\sqrt{x}-x-1}{\left(\sqrt{x}+1\right)\left(x+1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{1}{x+1}\)
g: \(\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\left(\dfrac{x-1}{\sqrt{x}+1}-2\right)\)
\(=\dfrac{\sqrt{x}+1+\sqrt{x}-1}{x-1}\cdot\left(\sqrt{x}-1-2\right)\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{x-1}\)
a) điều kiện \(x>0;x\ne1\)
\(\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{\sqrt{x}}{1-\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{1-\sqrt{x}}{\sqrt{x}+1}\right)\)
\(\Leftrightarrow\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{1-\sqrt{x}}{\sqrt{x}+1}\right)\)
\(\Leftrightarrow\left(\dfrac{\left(\sqrt{x}+1\right)^2+\sqrt{x}\left(\sqrt{x}-1\right)-\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{\left(\sqrt{x}+1\right)^2+\left(1-\sqrt{x}\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)
\(\Leftrightarrow\dfrac{x+2\sqrt{x}+1+x-\sqrt{x}-x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{x+2\sqrt{x}+1+\sqrt{x}-1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow\dfrac{x+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow\dfrac{x+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{4\sqrt{x}}=\dfrac{x+1}{4\sqrt{x}}\)
Bài 2:
a: \(A=\left(5+\sqrt{5}\right)\left(\sqrt{5}-2\right)+\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{4}-\dfrac{3\sqrt{5}\left(3-\sqrt{5}\right)}{4}\)
\(=-5+3\sqrt{5}+\dfrac{5+\sqrt{5}-9\sqrt{5}+15}{4}\)
\(=-5+3\sqrt{5}+5-2\sqrt{5}=\sqrt{5}\)
b: \(B=\left(\dfrac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}\right):\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+3\sqrt{x}+6-2\sqrt{x}-6}=1\)
a: \(A=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}\cdot\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+2\sqrt{x}+2\)
\(=\sqrt{x}\left(\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)+2\sqrt{x}+2\)
\(=\left(x-\sqrt{x}\right)\left(2\sqrt{x}+1\right)+2\sqrt{x}+2\)
\(=2x\sqrt{x}+x-2x-\sqrt{x}+2\sqrt{x}+2\)
\(=2x\sqrt{x}-x+\sqrt{x}+2\)
b: \(=\dfrac{\sqrt{x}-4+3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}:\dfrac{x-4-x}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{4\left(\sqrt{x}-1\right)}{-4}=-\sqrt{x}+1\)
c: \(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-3x+8\sqrt{x}+5-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+7\sqrt{x}+8}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(a.R=\left(\dfrac{\sqrt{x}+1}{\sqrt{xy}+1}+\dfrac{\sqrt{x}\left(\sqrt{y}+1\right)}{1-\sqrt{xy}}+1\right):\left(1-\dfrac{\sqrt{x}+1}{\sqrt{xy}+1}-\dfrac{\sqrt{x}\left(\sqrt{y}+1\right)}{\sqrt{xy}-1}\right)\)
\(R=\left[\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{xy}-1\right)-\sqrt{x}\left(\sqrt{y}+1\right)\left(\sqrt{xy}+1\right)+xy-1}{\left(\sqrt{xy}+1\right)\left(\sqrt{xy}-1\right)}\right]:\left[\dfrac{xy-1-\left(\sqrt{x}+1\right)\left(\sqrt{xy}-1\right)-\sqrt{x}\left(\sqrt{y}+1\right)\left(\sqrt{xy}+1\right)}{\left(\sqrt{xy}+1\right)\left(\sqrt{xy}-1\right)}\right]\)
\(R=\dfrac{x\sqrt{y}-\sqrt{x}+\sqrt{xy}-1-xy-\sqrt{xy}-x\sqrt{y}-\sqrt{x}+xy-1}{xy-1}:\dfrac{xy-1-x\sqrt{y}+\sqrt{x}+\sqrt{xy}+1-xy-\sqrt{xy}-x\sqrt{y}-\sqrt{x}}{xy-1}\)
\(R=\dfrac{-2\sqrt{x}-2}{xy-1}:\dfrac{-2x\sqrt{y}-2\sqrt{xy}}{xy-1}\)
\(R=\dfrac{-2\left(\sqrt{x}+1\right)}{xy-1}.\dfrac{xy-1}{-2\left(x\sqrt{y}+\sqrt{xy}\right)}\)
\(R=\dfrac{\sqrt{x}+1}{x\sqrt{y}+\sqrt{xy}}\)
\(b.C=\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{7\sqrt{x}+4}{x-\sqrt{x}-6}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)
\(C=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}+\dfrac{7\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)
\(C=\dfrac{2x-6\sqrt{x}+7\sqrt{x}+4-x-4\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)
\(C=\dfrac{x-3\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)
\(C=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)
\(c.M=\left(\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\dfrac{\sqrt{x}}{\sqrt{x}+x}=\dfrac{\sqrt{x}+1+x}{x+\sqrt{x}}.\dfrac{\sqrt{x}+x}{\sqrt{x}}=\dfrac{\sqrt{x}+1+x}{\sqrt{x}}\)
a) Đk: \(\left\{{}\begin{matrix}x\ne1\\x\ne4\\x>0\end{matrix}\right.\)
* giải pt: \(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x-1}}\right)=0\Leftrightarrow x=4\left(L\right)\)
Vậy x >4 thỏa bpt đã cho
Kl: \(x\in\left(4;+\infty\right)\)
b) chưa giải nhưng chắc cũng tương tự vậy thôi.
Quy trình để giải mọi bất phương trình:
+ Tìm tập xác định
+ giải PHƯƠNG TRÌNH (không có chữ "bất" nhé)
+ Xét dấu ---> kết luận
A)
Đặt \(\sqrt{1+2x}=a; \sqrt{1-2x}=b\) (\(a,b>0\) )
\(\Rightarrow \left\{\begin{matrix} a^2+b^2=2\\ a^2-b^2=4x=\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} 2a^2=2+\sqrt{3}\rightarrow 4a^2=4+2\sqrt{3}=(\sqrt{3}+1)^2\\ 2b^2=2-\sqrt{3}\rightarrow 4b^2=4-2\sqrt{3}=(\sqrt{3}-1)^2\end{matrix}\right.\)
\(\Rightarrow a=\frac{\sqrt{3}+1}{2}; b=\frac{\sqrt{3}-1}{2}\)
\(\Rightarrow ab=\frac{(\sqrt{3}+1)(\sqrt{3}-1)}{4}=\frac{1}{2}; a-b=1\)
Có:
\(A=\frac{a^2}{1+a}+\frac{b^2}{1-b}=\frac{a^2-a^2b+b^2+ab^2}{(1+a)(1-b)}\)
\(=\frac{2-ab(a-b)}{1+(a-b)-ab}=\frac{2-\frac{1}{2}.1}{1+1-\frac{1}{2}}=1\)
B)
\(2x=\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}\)
\(\Rightarrow 4x^2=\frac{a}{b}+\frac{b}{a}+2\)
\(\rightarrow 4(x^2-1)=\frac{a}{b}+\frac{b}{a}-2=\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2\)
\(\Rightarrow \sqrt{4(x^2-1)}=\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\) do $a>b$
T có: \(B=\frac{b\sqrt{4(x^2-1)}}{x-\sqrt{x^2-1}}=\frac{2b\sqrt{4(x^2-1)}}{2x-\sqrt{4(x^2-1)}}=\frac{2b\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}{\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}-\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}\)
\(=\frac{2b\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}{2\sqrt{\frac{b}{a}}}=\frac{b\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}{\sqrt{\frac{b}{a}}}=\frac{\frac{b(a-b)}{\sqrt{ab}}}{\sqrt{\frac{b}{a}}}=a-b\)
\(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\left(dkxd:x\ge0;x\ne1\right)\)
\(=\left[\dfrac{x+2}{\left(\sqrt{x}\right)^3-1}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}-1}\right]\cdot\dfrac{2}{\sqrt{x}-1}\)
\(=\left[\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right]\cdot\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{\left(x-2\sqrt{x}+1\right)\cdot2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\cdot\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2\cdot2}{\left(\sqrt{x}-1\right)^2\cdot\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{2}{x+\sqrt{x}+1}\)
Xét: \(A-2=\dfrac{2}{x+\sqrt{x}+1}-2\)
\(=\dfrac{2}{x+\sqrt{x}+1}-\dfrac{2\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}\)
\(=\dfrac{2-2x-2\sqrt{x}-2}{x+\sqrt{x}+1}\)
\(=\dfrac{-2x-2\sqrt{x}}{x+\sqrt{x}+1}\)
\(=\dfrac{-2\left(x+\sqrt{x}\right)}{x+\sqrt{x}+1}\)
Với \(x\ge0;x\ne1\Leftrightarrow\left\{{}\begin{matrix}x+\sqrt{x}\ge0\\x+\sqrt{x}+1>0\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{x+\sqrt{x}}{x+\sqrt{x}+1}\ge0\)
\(\Leftrightarrow\dfrac{-2\left(x+\sqrt{x}\right)}{x+\sqrt{x}+1}\le0\)
\(\Rightarrow A-2\le0\Leftrightarrow A\le2\)
Vậy: \(A\le2\).