Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 2A=21+22+23+...+251
=> A= (21+22+23+...+251) - ( 20+21+22+23+...+250)
=> A= 251 - 20 < 251=B
=> A<B
\(A=1+5+5^2+..+5^{49}+5^{50}\)
\(5A=5+5^2+5^3+...+5^{50}+5^{51}\)
\(5A-A=\left(5+5^2+5^3+...+5^{51}\right)-\left(1+5+5^2+...+5^{50}\right)\)
\(4A=\left(5-5\right)+\left(5^2-5^2\right)+...+\left(5^{50}+5^{50}\right)+5^{51}-1\)
\(4A=0+0+...+0+5^{51}-1\)
\(4A=5^{51}-1\)
\(A=\frac{5^{51}-1}{4}\)
\(S = 1 + 4 + 4^ 2 + ... + 4\)35
\(4S = 4 + 4^2 + 4 ^ 3 + ... + 4\)36
\(4S - S = ( 1 + 4 + 4^ 2 + ... + \)436\()\) \(- ( 1 + 4 + 4 ^ 2 + ... + 4\)35 \()\)
\(3S = 4\)36 \(- 1\)
\(3S = 64\)12 - 11
\(Ta thấy : 64\)12 \(- 1 < 64\)12
\(Do đó : 3S < 64\)12
\(Vậy : 3S < 64\)12
\(\left(-2\right)^3.\left(-5\right)^2-41.\left(-8\right)\)
\(=\)\(-8.25-41.\left(-8\right)\)
\(=-8\left(25-41\right)\)
\(=-8.\left(-16\right)\)
\(=128\)
\(2018-1018:\left(4^2-3^2\right)\)
\(=2018-1018:7\)
\(=2018-\frac{1018}{7}\)
\(=\frac{13108}{7}\)
\(-5.\left(-25\right).\left(-50\right)+5.25.50\)
\(=-6250+6250\)
\(=0\)
a. 5x3^x= 8x19683+7x19683
5x3^x=(8+7)x19683
5x3^x=15x19683
5x3^x= 295245
3^x=295245:5
=59049
3^x= 3^10
vậy x=10
d.x-32=0:45
x-32=0
x=0+32
x=32
\(1)\)\(M=3^0+3^2+3^4+3^6+...+3^{58}\)
\(M=\left(3^0+3^2\right)+\left(3^4+3^6\right)+...+\left(3^{57}+3^{58}\right)\)
\(M=\left(3^0+3^2\right)+3^4\left(3^0+3^2\right)+...+3^{57}\left(3^0+3^2\right)\)
\(M=10+3^4.10+...+3^{57}.10\)
\(M=10\left(1+3^4+...+3^{57}\right)\)
\(M=\overline{...0}\)
Vậy \(M\) có chữ số tận cùng là \(0\)
Chúc bạn học tốt ~