\(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\left(a^2-b^2\right)^2+\left(2ab\right)^2\)

\(=a^4-2a^2b^2+b^4+4a^2b^2\)

\(=a^4+2a^2b^2+b^4=\left(a^2+b^2\right)^2\)

b: \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

\(=a^2c^2+b^2d^2+a^2d^2+b^2c^2\)

\(=c^2\left(a^2+b^2\right)+d^2\left(a^2+b^2\right)\)

\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

c: \(\left(ax+b\right)^2+\left(a-bx\right)^2+c^2x^2\)

\(=a^2x^2+b^2+a^2+b^2x^2+c^2x^2\)

\(=a^2\left(x^2+1\right)+b^2\left(x^2+1\right)+c^2x^2\)

\(=\left(x^2+1\right)\left(a^2+b^2\right)+c^2x^2\)

18 tháng 4 2016

\(a.\)

Ta sẽ biến đổi biểu thức  \(B\)  quy về dạng có thể dùng được hằng đẳng thức  \(\left(x-y\right)\left(x+y\right)=x^2-y^2\), khi đó:

\(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

                                                                                     \(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

                                                                                     \(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)

                                                                                     \(=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1\)

Vì  \(2^{16}>2^{26}-1\)  nên  \(2^{16}>\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

Vậy,  \(A>B\)

Tương tự với câu  \(b\)  kết hợp với phương pháp tách hạng tử, khi đó xuất hiện hằng đẳng thức mới và dễ dàng đơn giản hóa biểu thức \(A\). Ta có:

\(A=4\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

                                                                                \(=\frac{1}{2}\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

                                                                                \(=\frac{1}{2}\left(3^{64}-1\right)\left(3^{64}+1\right)=\frac{1}{2}\left(3^{128}-1\right)\)

Mặt khác, do  \(\frac{1}{2}<1\)  nên   \(\frac{1}{2}\left(3^{128}-1\right)<3^{128}-1\)

Vậy,  \(B>A\)

15 tháng 8 2017

Bài 1:

a,\(127^2+146.127+73^2=127^2+2.127.73+73^2\)\(=\left(127+73\right)^2=200^2=40000\)

b,\(9^8.2^8-\left(18^4-1\right)\left(18^4+1\right)\)

\(18^8-\left(18^8-1\right)=1\)

\(c,100^2-99^2+98^2-97^2+...+2^2-1\)

\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)\(=199+195+...+3\)

áp dụng công thức Gauss ta đc đáp án là:10100

d, mk khỏi ghi đề dài dòng:

\(\dfrac{\left(780-220\right)\left(780+220\right)}{\left(125+75\right)^2}=\dfrac{560000}{40000}=14\)Bài 2:

\(A=\left(2-1\right)\left(2+1\right)\)\(\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)Cứ tiếp tục ta đc \(A=2^{32}-1< B=2^{32}\)

\(\left(3-1\right)C=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)...\left(3^2+16\right)\)giải như câu a đc:\(\left(3-1\right)C=3^{32}-1\)

\(\Rightarrow C=\dfrac{3^{32}-1}{3-1}=\dfrac{3^{32}-1}{2}< D=3^{32}-1\)

21 tháng 8 2017

1c,

\(=100^2-99^2+98^2-97^2+...+2^2-1^2\\ =\left(100+99\right)\left(100-99\right)+\left(98+97\right)\left(98-97\right)+...+\left(2+1\right)\left(2-1\right)\\ =\left(100+99\right)\cdot1+\left(98+97\right)\cdot1+...+\left(2+1\right)\cdot1\\ =100+99+98+97+...+2+1\\ =\dfrac{100\cdot101}{2}=5050\)

10 tháng 8 2020

Ta có : \(\hept{\begin{cases}A=1999.2001\\B=2000^2\end{cases}}\)

\(< =>\hept{\begin{cases}A=1999.2000+1999\\B=2000\cdot2000\end{cases}}\)

\(< =>\hept{\begin{cases}A=1999.2000+2000+1\\B=1999.2000+2000\end{cases}}\)

\(< =>\hept{\begin{cases}A=2000.2000+1\\B=2000.2000\end{cases}}\)

\(< =>A>B\)

10 tháng 8 2020

a. Ta có : \(A=1999.2021=\left(2000-1\right)\left(2000+1\right)=2020^2-1< 2020\)

\(\Rightarrow A< B\)

b. Ta có : \(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

...

\(=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1< 2^{16}\)

\(\Rightarrow A>B\)

c,d tương tự

19 tháng 12 2016

a) \(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{ab^2-ac^2-b^3+bc^2}\)

\(=\frac{a^2b-a^2c+b^2c-b^2a+c^2\left(a-b\right)}{ab^2-b^3-ac^2+bc^2}\)

\(=\frac{\left(a^2b-b^2a\right)+\left(b^2c-a^2c\right)+c^2\left(a-b\right)}{b^2\left(a-b\right)-c^2\left(a-b\right)}\)

\(=\frac{ab\left(a-b\right)+c\left(b^2-a^2\right)+c^2\left(a-b\right)}{\left(b^2-c^2\right)\left(a-b\right)}\)

\(=\frac{ab\left(a-b\right)-c\left(a-b\right)\left(a+b\right)+c^2\left(a-b\right)}{\left(b-c\right)\left(b+c\right)\left(a-b\right)}\)

\(=\frac{ab-c\left(a+b\right)+c^2}{\left(b-c\right)\left(b+c\right)}\)

\(=\frac{ab-ac+c^2-bc}{\left(b-c\right)\left(b+c\right)}\)

\(=\frac{a\left(b-c\right)-c\left(b-c\right)}{\left(b-c\right)\left(b+c\right)}\)

\(=\frac{\left(b-c\right)\left(a-c\right)}{\left(b-c\right)\left(b+c\right)}\)

\(=\frac{a-b}{b+c}\)

19 tháng 12 2016

Sửa lại: \(\frac{a-c}{b+c}\)

3 tháng 7 2016

a)(viết lại đề nha)

<=>(2ab-a2-b2+1)(2ab+a2+b2-1)=[-(a-b)2+1][(a+b)2-1]=(1-a+b)(1+a-b)(a+b-1)(a+b+1)

b)

<=>(xy+4-2x-2y)(xy+4+2x+2y)

c)

<=>(x2-3)(x2+3)+2x(x2+3)=(x2+3)(x2-3+2x)=(x2+3)[(x+1)2-4]=(x2+3)(x+1-2)(x+1+2)=(x2+3)(x-1)(x+3)