\(\dfrac{3^{10}+1}{3^9+1}\) và B =\(\dfrac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2017

Ta có : \(\dfrac{1}{3}A=\dfrac{3^{10}+1}{3\left(3^9+1\right)}=\dfrac{3^{10}+1}{3^{10}+3}=\dfrac{3^{10}+3-2}{3^{10}+3}\)

\(=\dfrac{3^{10}+3}{3^{10}+3}-\dfrac{2}{3^{10}+3}=1-\dfrac{2}{3^{10}+3}\)

\(\dfrac{1}{3}B=\dfrac{3^9+1}{3\left(3^8+1\right)}=\dfrac{3^9+1}{3^9+3}=\dfrac{3^9+3-2}{3^9+3}\)

\(=\dfrac{3^9+3}{3^9+3}-\dfrac{2}{3^9+3}=1-\dfrac{2}{3^9+3}\)

Vì 2 > 0 , 0 < 39 + 3 < 310 + 3

\(\Rightarrow\dfrac{2}{3^{10}+3}< \dfrac{2}{3^9+3}\)\(\Rightarrow-\dfrac{2}{3^{10}+3}>-\dfrac{2}{3^9+3}\)

\(\Rightarrow1-\dfrac{2}{3^{10}+3}>1-\dfrac{2}{3^9+3}\Rightarrow A>B\)

13 tháng 3 2018

a,A<B

b,A,<B

c,A<B

13 tháng 3 2018

a, \(A-B=\frac{3}{8^3}+\frac{7}{8^4}-\frac{7}{8^3}-\frac{3}{8^4}==\left(\frac{7}{8^4}-\frac{3}{8^4}\right)-\left(\frac{7}{8^3}-\frac{3}{8^3}\right)=\frac{4}{8^4}-\frac{4}{8^3}< 0\)

Vậy A < B

b, \(A=\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)

\(B=\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)

Vì \(10^7-8< 10^8-7\Rightarrow\frac{1}{10^7-8}>\frac{1}{10^8-7}\Rightarrow\frac{13}{10^7-8}>\frac{13}{10^8-7}\Rightarrow A>B\)

c,Áp dụng nếu \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+n}{a+n}\) có:

 \(B=\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1993}+1+9}{10^{1992}+1+9}=\frac{10^{1993}+10}{10^{1992}+10}=\frac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}=\frac{10^{1992}+1}{10^{1991}+1}=A\)

Vậy A < B

21 tháng 6 2016

Đặt tử A là T ta có:

5T=5(1+5+52+...+59)

5T=5+52+...+510

5T-T=(5+52+...+510)-(1+5+52+...+59)

T=(510-1)/4

Mẫu A là H tính tương tự đc:(59-1)/4.Thay vào ta có:\(A=\frac{\frac{5^{10}-1}{4}}{\frac{5^9-1}{4}}=\frac{5^{10}-1}{5^9-1}\)

B tính tương tự A được \(\frac{3^{10}-1}{3^9-1}\) tới đây sao nx

8 tháng 7 2017

a) \(\dfrac{n}{3n+1}=\dfrac{2.n}{2\left(3n+1\right)}=\dfrac{2n}{6n+2}\)

\(\dfrac{2n}{6n+2}< \dfrac{2n}{6n+1}\Leftrightarrow\dfrac{n}{3n+1}< \dfrac{2n}{6n+1}\)

b) Áp dụng công thức :

\(\dfrac{a}{b}< 1\Leftrightarrow\dfrac{a}{b}< \dfrac{a+m}{b+m}\left(a;b;m\in N\cdot\right)\)

Ta có :

\(B=\dfrac{10^8+1}{10^9+1}< 1\)

\(\Leftrightarrow B=\dfrac{10^8+1}{10^9+1}< \dfrac{10^8+1+9}{10^9+1+9}=\dfrac{10^8+10}{10^9+10}=\dfrac{10\left(10^7+1\right)}{10\left(10^8+1\right)}=\dfrac{10^7+1}{10^8+1}=A\)

\(\Leftrightarrow B< A\)

8 tháng 7 2017

Ta có:

\(\dfrac{n}{3n+1}=\dfrac{2n}{2\left(3n+1\right)}=\dfrac{2n}{6n+2}\)

\(\dfrac{2n}{6n+2}< \dfrac{2n}{6n+1}\Rightarrow\dfrac{n}{3n+1}< \dfrac{2n}{6n+1}\)

Ta có:

\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)

\(B=\dfrac{10^8+1}{10^9+1}< 1\)

\(\Rightarrow B< \dfrac{10^8+1+9}{10^9+1+9}\Rightarrow B< \dfrac{10^8+10}{10^9+10}\Rightarrow B< \dfrac{10\left(10^7+1\right)}{10\left(10^8+1\right)}\Rightarrow B< \dfrac{10^7+1}{10^8+1}=A\)\(\Rightarrow B< A\)

a: 51/56=1-5/56

61/66=1-5/66

mà -5/56<-5/66

nên 51/56<61/66

b: 41/43<1<172/165

c: \(\dfrac{101}{506}>0>-\dfrac{707}{3534}\)

b: \(A=\dfrac{10^7-8+13}{10^7-8}=1+\dfrac{13}{10^7-8}\)

\(B=\dfrac{10^8-7+13}{10^8-7}=1+\dfrac{13}{10^8-7}\)

mà \(10^7-8< 10^8-7\)

nên A>B

c: \(\dfrac{1}{10}A=\dfrac{10^{1992}+1}{10^{1992}+10}=1-\dfrac{9}{10^{1992}+10}\)

\(\dfrac{1}{10}B=\dfrac{10^{1993}+1}{10^{1993}+10}=1-\dfrac{9}{10^{1993}+10}\)

mà \(\dfrac{9}{10^{1992}+10}>\dfrac{9}{10^{1993}+10}\)

nên A<B

24 tháng 9 2017

\(A=\frac{2^9+1}{2^{10}+1};B=\frac{2^{10}+1}{2^{10}+1}\)

Ta có : ( so sánh tử số )

29 + 1 và 210 + 1

Vì 10 > 9 => 2^10 > 2^9 => 2^10 + 1 > 2^9+1 hay \(A< B\)

24 tháng 9 2017

Ta thấy :

\(B=\frac{2^{10}+1}{2^{10}+1}=1\)

\(A=\frac{2^9+1}{2^{10}+1}< 1=\frac{2^{10}+1}{2^{10}+1}=B\)

\(\Rightarrow A< B\)