Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 4 + 42 + ... + 4100
A = ( 4 + 42 ) + ... + ( 499 + 4100 )
A = 4 . ( 1 + 4 ) + ... + 499 . ( 1 + 4 )
A = 4 . 5 + .... + 499 . 5
A = 5 . ( 4 + ... + 499 )
Vì 5 chia hết cho 5 nên A chia hết cho 5 .
Ta có :
A = 4 + 42 + ... + 4100
4A = 42 + 43 + ... + 4101
4A - A = 42 + 43 + ... + 4101 - 4 + 42 + ... + 4100
3A = 4101 - 4
A = \(\frac{4^{101}-4}{3}\)
Đến đây thì mình chịu .
Mik cũng gặp bài giống y như bạn nhưng ko giải đc đây. Bạn nào biết vào giúp chúng mình đi.
A=\(\frac{100^{100}+1}{100^{99}+1}< \frac{\left(100^{100}+1\right)+99}{\left(100^{90}+1\right)+99}=\frac{100^{100}+100}{100^{90}+100}=\frac{100\left(100^{99}+1\right)}{100\left(100^{89}+1\right)}=\frac{100^{99}+1}{100^{89}+1}\)
Vì \(\frac{100^{99}+1}{100^{89}+1}=\frac{100^{99}+1}{100^{89}+1}\)
Nên A=B
\(A=\frac{1.2.3...........99.100}{2.4.6....100}\)
\(=\frac{1.2.3..............99.100}{1.2.2.2.2.3.........50.2}\)
\(=\frac{1.2.3.......50........99.100}{\left(1.2.3........50\right).2.2.....2}\)
\(=\frac{51.52..........99.100}{2.2............2}\)
\(=\frac{51}{2}.\frac{52}{2}...........\frac{100}{2}\)
\(=>4A=4+4^2+...+4^{99}+4^{100}\)
\(=>4A-A=\left(4+4^2+...+4^{99}+4^{100}\right)-\left(1+4+4^2+...+4^{99}\right)\)
\(=>3A=4^{100}-1\)
\(=>A=\frac{4^{100}-1}{3}\)
\(\frac{1}{3}B=\frac{4^{100}}{3}\)
=> A<\(\frac{1}{3}B\)
A = 1 + 4 + 42 + 43 + ... + 499
4A = 4( 1 + 4 + 42 + 43 + ... + 499 )
4A = 4 + 42 + 43 + ... + 4100
4A - A = 3A
= ( 4 + 42 + 43 + ... + 4100 ) - ( 1 + 4 + 42 + 43 + ... + 499 )
= 4 + 42 + 43 + ... + 4100 - 1 - 4 - 42 - 43 - ... - 499
= 4100 - 1
=> \(A=\frac{4^{100}-1}{3}\)
B = 4100 => \(\frac{1}{3}B=4^{100}\cdot\frac{1}{3}=\frac{4^{100}}{3}\)
\(4^{100}-1< 4^{100}\Rightarrow\frac{4^{100}-1}{3}< \frac{4^{100}}{3}\Rightarrow A< \frac{1}{3}B\left(đpcm\right)\)
giup toi cai
A = 1 + 4 + 4^2 + ... + 4^99
4A = 4 + 4^2 + 4^3 +... + 4^100
4A - A = 3A = ( 4 + 4^2 + 4^100 ) - ( 1 + 4 + 4^2 + 4^99 )
3A = 4^100 - 1
Ta thấy: 3A < B => A < B/3 ( đpcm )
k đúng nhé