K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2019

B = 1/21 + 1/22 + ... + 1/50 > 1/60 + 1/60 + ... + 1/60 (30 số hạng)

=> B > 30/60 = 1/2

Mà 1/2 > 39/40

=> B > A

25 tháng 6 2019

\(B=\frac{1}{21}+\frac{1}{22}+...+\frac{1}{50}< \frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{3}{5}=\frac{24}{40}< \frac{39}{40}=A\)

\(\Rightarrow A>B\)

12 tháng 8 2019

1.

a) 13\(\frac{1}{3}\) : 1\(\frac{1}{3}\) = 26 : (2x - 1)

<=> \(\frac{40}{3}:\frac{4}{3}\) = 13x - 26

<=> 10 + 26 = 13x

<=> 13x = 36

<=> x = \(\frac{36}{13}\)

b) 0,2 : 1\(\frac{1}{5}\) = \(\frac{2}{3}\) : (6x + 7)

<=> \(\frac{1}{5}:\frac{6}{5}\) = \(\frac{1}{9}x\) : \(\frac{2}{21}\)

<=> \(\frac{1}{6}\) = \(\frac{1}{9}x\) : \(\frac{2}{21}\)

<=> \(\frac{1}{9}x\) = \(\frac{2}{21}.\frac{1}{6}\) = \(\frac{1}{63}\)

<=> x = \(\frac{1}{7}\)

c) \(\frac{37-x}{x+13}\) = \(\frac{3}{7}\)

<=> (37 - x) . 7 = 3.(x + 13)

<=> 119 - 7x = 3x + 39

<=> -7x - 3x = 39 - 119

<=> -10x = -80

<=> x = 8

d) \(\frac{x-1}{x+5}=\frac{6}{7}\)

<=> 7(x - 1) = 6(x + 5)

<=> 7x - 7 = 6x + 30

<=> 7x - 6x = 30 + 7

<=> x = 37

e)

2\(\frac{2}{\frac{3}{0,002}}\) = \(\frac{1\frac{1}{9}}{x}\)

<=> \(\frac{1501}{750}\) = \(\frac{10}{9}:x\)

<=> x = \(\frac{10}{9}:\frac{1501}{750}\) = \(\frac{2500}{4503}\)

12 tháng 8 2019

Bài 2. đề sai

Bài 3.

a) 6,88 : x = \(\frac{12}{27}\)

<=> x = 6,88 : \(\frac{12}{27}\)

<=> x = 15,48

b) 8\(\frac{1}{3}\) : \(11\frac{2}{3}\) = 13 : 2x

<=> \(\frac{25}{3}:\frac{35}{3}\) = 13 : 2x

<=> \(\frac{5}{7}=13:2x\)

<=> 2x = \(13:\frac{5}{7}\) = \(\frac{91}{5}\)

<=> x = 9,1

3 tháng 7 2020

\(\frac{\sin^4\alpha}{a}+\frac{\cos^4\alpha}{b}\ge\frac{\left(\sin^2\alpha+\cos^2\alpha\right)^2}{a+b}=\frac{1}{a+b}\)

\("="\Leftrightarrow\frac{\sin^2\alpha}{a}=\frac{\cos^2\alpha}{b}\Leftrightarrow\sin^2\alpha.b=a-a.\sin^2\alpha\)

\(\Leftrightarrow\sin^2\alpha\left(b+a\right)=a\Rightarrow\sin^2\alpha=\frac{a}{a+b}\)

\(\cos^2\alpha.a=b-b\cos^2\alpha\Rightarrow\cos^2\alpha=\frac{b}{a+b}\)

\(\Rightarrow M=\frac{\frac{a^5}{\left(a+b\right)^5}}{a^4}+\frac{\frac{b^5}{\left(a+b\right)^5}}{b^4}=\frac{a+b}{\left(a+b\right)^5}=\frac{1}{\left(a+b\right)^4}\) => D

18 tháng 6 2016

Câu 2 :

b) \(\frac{x}{3}=\frac{-2}{9}\)

=> x = \(\frac{-2}{9}.3\) = \(\frac{-2}{3}\)

c) \(0,5x-\frac{2}{3}x=\frac{7}{12}\)

=> \(\frac{1}{2}x-\frac{2}{3}x=\frac{7}{12}\)

=> \(-\frac{1}{6}\)x = \(\frac{7}{12}\)

=> x = \(\frac{7}{12}:\frac{-1}{6}\)

=> x =\(\frac{-7}{2}\)

18 tháng 6 2016

Đề 1 câu 5 :

\(3B=3^2+3^3+3^4+...+3^{201}\)

\(\Rightarrow2B=3B-B=3^{201}-3\)

\(\Rightarrow2B+3=\left(3^{201}-3\right)+3=3^{201}\)

Do đó n = 201

3 tháng 5 2016

a) i)\(\frac{7\cdot25-7\cdot7}{7\cdot24+7\cdot3}=\frac{7\left(25-7\right)}{7\left(24+3\right)}=\frac{18}{27}=\frac{2}{3}\) ii)\(\frac{2\cdot\left(-1\right)\cdot13\cdot\left(-3\right)^2\cdot\left(-2\right)\cdot\left(-5\right)}{\left(-3\right)\cdot2\cdot2\cdot\left(-5\right)\cdot13\cdot2}=\frac{-3}{2}\)

b) i)\(\frac{3}{-4}< 0;\frac{-1}{-4}>0=>\frac{3}{-4}< \frac{-1}{-4}\)   

ii) ta có \(\frac{15}{17}+\frac{2}{17}=1;\frac{25}{27}+\frac{2}{27}=1\)

mà \(\frac{2}{17}>\frac{2}{27}\) =>\(\frac{15}{17}< \frac{25}{27}\)

3 tháng 5 2016

dug ko v

 

5 tháng 1 2017

Câu 2)

Ta có \(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{3}\)

\(\Rightarrow\frac{b+1+a+1}{\left(a+1\right)\left(b+1\right)}\ge\frac{4}{3}\)

Ta có \(a+b=1\)

\(\Rightarrow\frac{3}{\left(a+1\right)\left(b+1\right)}\ge\frac{4}{3}\)

\(\Rightarrow\frac{3}{\left(a+1\right)b+a+1}\ge\frac{4}{3}\)

\(\Rightarrow\frac{3}{ab+b+a+1}\ge\frac{4}{3}\)

Ta có \(a+b=1\)

\(\Rightarrow\frac{3}{ab+2}\ge\frac{4}{3}\)

\(\Leftrightarrow9\ge4\left(ab+2\right)\)

\(\Rightarrow9\ge4ab+8\)

\(\Rightarrow1\ge4ab\)

Do \(a+b=1\Rightarrow\left(a+b\right)^2=1\)

\(\Rightarrow\left(a+b\right)^2\ge4ab\)

\(\Rightarrow a^2+2ab+b^2\ge4ab\)

\(\Rightarrow a^2-2ab+b^2\ge0\)

\(\Rightarrow\left(a-b\right)^2\ge0\) (đpcm )

5 tháng 1 2017

Câu 3)

Ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)

\(a+b+c=1\)

\(\Rightarrow\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\ge9\)

\(\Rightarrow a+b+c\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

Áp dụng bất đẳng thức Cô-si

\(\Rightarrow\left\{\begin{matrix}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{matrix}\right.\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\sqrt[3]{abc}\sqrt[3]{\frac{1}{abc}}\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9.\sqrt[3]{\frac{abc}{abc}}\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\) (điều này luôn luôn đúng)

\(\Rightarrow\) ĐPCM

2 tháng 5 2016

A<B

Ta có B=\(\frac{2009^{2010}-2}{2009^{2011}-2}\)<1

=>\(\frac{2009^{2010}-2}{2009^{2011}-2}\)<\(\frac{2009^{2010}-2+3}{2009^{2011}-2+3}\)=\(\frac{2009^{2010}+1}{2009^{2011}+1}\)(1)

Mà \(\frac{2009^{2010}+1}{2009^{2011}+1}\)<1

=> \(\frac{2009^{2010}+1}{2009^{2011}+1}\)<\(\frac{2009^{2010}+1+2008}{2009^{2011}+1+2008}\)=\(\frac{2009^{2010}+2009}{2009^{2011}+2009}\)=\(\frac{2009\cdot\left(2009^{2009}+1\right)}{2009\cdot\left(2009^{2010}+1\right)}\)=\(\frac{2009^{2009}+1}{2009^{2010}+1}\)=A(2)

Từ (1)và(2)=>B<\(\frac{2009^{2010}+1}{2009^{2011}+1}\)<A=>B<A hay A>B

 

 

13 tháng 2 2020

a) Áp dụng BĐT Cauchy-Schwarz dạng Engel: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Tương tự:\(\frac{1}{b}+\frac{1}{c}\ge\frac{4}{b+c};\frac{1}{c}+\frac{1}{a}\ge\frac{4}{c+a}\)

Cộng theo vế 3 BĐT trên rồi chia cho 2 ta thu được đpcm

Đẳng thức xảy ra khi \(a=b=c\)

b)Đặt \(a+b=x;b+c=y;c+a=z\). Cần chứng minh:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge2\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)

Cách làm tương tự câu a.

c) \(VT=\Sigma_{cyc}\frac{1}{\left(a+b\right)+\left(a+c\right)}\le\frac{1}{4}\Sigma_{cyc}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\le\frac{1}{16}\Sigma\left(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\)

Đẳng thức xảy ra khi \(a=b=c=\frac{3}{4}\)

d) Em làm biếng quá anh làm nốt đi:P

13 tháng 2 2020

lm phần d đi a k bt lm