K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2018

\(A=\frac{5^{2016}+1}{5^{2017}+1}\)

\(\Rightarrow5A=\frac{5^{2017}+5}{5^{2017}+1}=1+\frac{4}{5^{2017}+1}\)

\(B=\frac{5^{2017}+1}{5^{2018}+1}\)

\(\Rightarrow5B=\frac{5^{2018}+5}{5^{2018}+1}=1+\frac{4}{5^{2018}+1}\)

Do \(\frac{4}{5^{2018}+1}< \frac{4}{5^{2017}+1}\)

\(\Rightarrow5A>5B\Leftrightarrow A>B\)

Nhân cả hai tử của \(A\)và \(B\)với 2 , ta được :

\(10A=10.\left(\frac{10^{2016}+1}{10^{2017}+1}\right)=\frac{10^{2017}+1+9}{10^{2017}+1}=1+\frac{9}{2^{2017}+1}\)

\(10B=10\left(\frac{10^{2017}+1}{10^{2018}+1}\right)=\frac{10^{2018}+10}{10^{2018}+1}=\frac{10^{2018}+1+9}{10^{2018}}=1+\frac{9}{10^{2018}+1}\)

Vì \(1=1;9=9\)

\(\Rightarrow\)Ta so sánh mẫu , ta có:

\(10^{2017}< 10^{2018}\)

\(\Rightarrow10^{2017}+1< 10^{2018}+1\)

\(\Rightarrow1+\frac{9}{10^{2017}+1}>1+\frac{9}{10^{2018}+1}\)

\(\Rightarrow10A>10B\)

Hay \(A>B\)

16 tháng 2 2020

Ta có: \(\frac{1}{2}A=\frac{2^{2018}-3}{2^{2017}-1}.\frac{1}{2}=\frac{2^{2018}-3}{2^{2018}-2}=\frac{2^{2018}-2-1}{2^{2018}-2}=1-\frac{1}{2^{2018}-2}\)

Tương tự ta có: \(\frac{1}{2}B=1-\frac{1}{2^{2017}-2}\)

Vì \(2^{2018}>2^{2017}\)\(\Rightarrow2^{2018}-2>2^{2017}-2\)

\(\Rightarrow\frac{1}{2^{2018}-2}< \frac{1}{2^{2017}-2}\)\(\Rightarrow1-\frac{1}{2^{2018}-2}>1-\frac{1}{2^{2017}-2}\)

hay \(\frac{1}{2}A>\frac{1}{2}B\)\(\Rightarrow A>B\)( vì \(\frac{1}{2}>0\))

Vậy \(A>B\)

20 tháng 6 2018

a) ta có: \(1-\frac{2016}{2017}=\frac{1}{2017}\)

\(1-\frac{2017}{2018}=\frac{1}{2018}\)

\(\Rightarrow\frac{1}{2017}>\frac{1}{2018}\Rightarrow1-\frac{2016}{2017}>1-\frac{2017}{2018}\Rightarrow\frac{2016}{2017}< \frac{2017}{2018}\)

b) ta có: \(\frac{2017}{2016}-1=\frac{1}{2016};\frac{2018}{2017}-1=\frac{1}{2017}\)

\(\Rightarrow\frac{1}{2016}>\frac{1}{2017}\Rightarrow\frac{2017}{2016}-1>\frac{2018}{2017}-1\Rightarrow\frac{2017}{2016}>\frac{2018}{2017}\)

20 tháng 6 2018

Tru 1 moi phan so roi so sanh nha 'O_O"

26 tháng 8 2017

Áp dung công thức \(a>b\Leftrightarrow\frac{a}{b}>\frac{a+m}{b+m}\)

\(B=\frac{10^{2017}+1}{10^{2016}+1}>\frac{10^{2017}+1+9}{10^{2016}+1+9}=\frac{10^{2017}+10}{10^{2016}+10}=\frac{10\left(10^{2016}+1\right)}{10\left(10^{2015}+1\right)}=\frac{10^{2016}+1}{10^{2015}+1}=A\)

\(\Leftrightarrow B>A\)

26 tháng 10 2019

A = \(\frac{\frac{3}{4}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{4}-\frac{5}{11}+\frac{5}{13}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}-\frac{5}{6}+\frac{5}{8}}\)

\(=\frac{3.\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}{5.\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}\right)}\)

\(=\frac{3}{5}+\frac{1}{\frac{5}{2}}\)

\(=\frac{3}{5}+\frac{2}{5}=1\)

26 tháng 10 2019

b) B = \(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6.8^4.3^5}-\frac{5^{10}.7^3:25^5.49}{\left(125.7\right)^3+5^9.14^3}\)

\(=\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{2^{12}.3^6+\left(2^3\right)^4.3^5}-\frac{5^{10}.7^3-\left(5^2\right)^5.7^2}{\left(5^3\right)^3.7^3+5^9.\left(7.2\right)^3}\)

\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}-7^2}{5^9.7^3+5^9.7^3.2^3}\)

\(=\frac{2^{12}.3^4.\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}-\frac{5^{10}.7^2.\left(7-1\right)}{5^9.7^3\left(1+2^3\right)}\)

 \(=\frac{1}{3.2}-\frac{5.2}{7.3}\)

\(=\frac{7}{3.2.7}-\frac{5.2.2}{7.3.2}\)

\(=\frac{7}{42}-\frac{20}{42}\)

\(=-\frac{13}{42}\)

6 tháng 4 2018

id nhu 1 tro dua

1 tháng 11 2019

Ta có:

\(\Rightarrow A=B.\)

\(\Rightarrow A^{2017}=B^{2017}\)

\(\Rightarrow\left(A^{2017}-B^{2017}\right)^{2018}=\left(B^{2017}-B^{2017}\right)^{2018}=0^{2018}=0.\)

Vậy \(\left(A^{2017}-B^{2017}\right)^{2018}=0.\)

Chúc bạn học tốt!