Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
kieu nay la ko tinh ra ket qua hay so sanh
A=1+C; voi C=5^9/(1+...5^8)=1/(1/5^9+1/5^8+...+1/5)
B=1+D;voi D=3^9/(1+..3^8)=1/(1/3^9+1/3^8+...+1/3)
C=1/E; voi E=(1/5^9+1/5^8+...+1/5)
D=1/f; voi F=(1/3^9+1/3^8+...+1/3)
=> F-E=(1/3-1/5)+...+(1/3^9-1/5^9) >0=> F>E
=> C>D=> A>B
mình viết tắt bạn tự hiểu nha:
a=1+(59/1+5+525+...+58
b=1+(39/1+3+33+....+38
VD:A/B-C/D=A.C/B.D-C.B/D.B
TƯƠNG TỰ NHƯ A,B BẠN TÍNH RA
Ta có: \(5\left(1+5+5^2+...+5^9\right)-\left(1+5+5^2+...+5^9\right)\)
= \(\left(5+5^2+5^3+...+5^{10}\right)-\left(1+5+5^2+...+5^9\right)\)
\(4\left(1+5+5^2+...+5^9\right)\)\(=5^{10}-1\)
=> \(1+5+5^2+...+5^9=\frac{5^{10}-1}{4}\)
Tương tự: \(1+5+5^2+....+5^8=\frac{5^9-1}{4}\)
=> \(A=\frac{\frac{5^{10}-1}{4}}{\frac{5^9-1}{4}}=\frac{5^{10}-1}{5^9-1}=\frac{5\left(5^9-1\right)+4}{5^9-1}=5+\frac{4}{5^9-1}>5\)
Tương tự:
\(1+3+3^2+...+3^9=\frac{3^{10}-1}{2}\)
và \(1+3+3^2+...+3^8=\frac{3^9-1}{2}\)
=>\(B=\frac{3^{10}-1}{3^9-1}=\frac{3\left(3^9-1\right)+2}{3^9-1}=3+\frac{2}{3^9-1}< 5\)
=> A > 5 > B
A= \(\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}\)
= \(\frac{1}{1+5+5^2+...+5^8}+\frac{5\left(1+5+5^2+...+5^8\right)}{1+5+5^2+...+5^8}\)
mà \(\frac{1}{1+5+5^2+...+5^8}\approx0\)
suy ra: A= 5.
chứng minh tương tự, ta có: B=3
5 > 3 --> A>B
a, \(B=\frac{19^{31}+5}{19^{32}+5}< \frac{19^{31}+5+90}{19^{32}+5+90}=\frac{19^{31}+95}{19^{32}+95}=\frac{19\left(19^{30}+5\right)}{19\left(19^{31}+5\right)}=\frac{19^{30}+5}{19^{31}+5}=A\)
b, Ta có: \(\frac{1}{A}=\frac{2^{20}-3}{2^{18}-3}=\frac{2^2.\left(2^{18}-3\right)+9}{2^{18}-3}=4+\frac{9}{2^{18}-3}\)
\(\frac{1}{B}=\frac{2^{22}-3}{2^{20}-3}=\frac{2^2\left(2^{20}-3\right)+9}{2^{20}-3}=4+\frac{9}{2^{20}-3}\)
Vì \(\frac{9}{2^{18}-3}>\frac{9}{2^{20}-3}\)\(\Rightarrow\frac{1}{A}>\frac{1}{B}\Rightarrow A< B\)
c, Câu hỏi của truong nguyen kim
nhìn vào A và B ta thấy ngay đc 1 điều
chúng bằng nhau
nhầm, ghi nhầm kq sang bài này, xl