Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(M=\frac{101^{102}+1}{101^{103}+1}\)
\(101M=\frac{101^{103}+1+100}{101^{103}+1}=1+\frac{100}{101^{103}+1}\)
Ta lại có:
\(N=\frac{101^{103}+1}{101^{104}+1}\)
\(101N=\frac{101^{104}+1+100}{101^{104}+1}=1+\frac{100}{101^{104}+1}\)
Vì \(\frac{100}{101^{104}+1}< \frac{100}{101^{103}+1}\Rightarrow101N< 101M\Rightarrow N< M\)
So sánh M và N biết rằng :
\(M=\frac{101^{102}+1}{101^{103}+1}\)
\(N=\frac{101^{103}+1}{101^{104}+1}\)
ta có bổ đề sau .với\(\frac{a}{b}>0\Rightarrow\frac{a}{b}< \frac{a+c}{b+c}\)
\(\Rightarrow N=\frac{101^{103}+1}{101^{104}+1}< \frac{101^{103}+1+100}{101^{104}+1+100}\)
mà \(\frac{101^{103}+1+100}{101^{104}+1+100}=\frac{101^{103}+101}{101^{104}+101}\)
\(=\frac{101\left(101^{102+1}\right)}{101\left(101^{103}+1\right)}=\frac{101^{102}+1}{101^{103}+1}=M\)
vậy \(M>N\)
Ta có: \(N=\frac{101^{103}+1}{101^{104}+1}< \frac{101^{103}+1+100}{101^{104}+1+100}\)
Mà: \(\frac{101^{103}+1+100}{101^{104}+1+100}=\frac{101^{103}+101}{101^{104}+101}=\frac{101\left(101^{102}+1\right)}{101\left(101^{103}+1\right)}=\frac{101^{102}+1}{101^{103}+1}=M\)
Ta có: \(N< \frac{101^{103}+1+100}{101^{104}+1+100};\frac{101^{103}+1+100}{101^{104}+1+100}=M\)
=> N<M
=>
Ta có : \(101M=\frac{101\left(101^{102}+1\right)}{101^{103}+1}=\frac{101^{103}+100+1}{101^{103}+1}=1+\frac{100}{101^{103}+1};\)
\(101N=\frac{101\left(101^{103}+1\right)}{101^{104}+1}=\frac{101^{104}+1+100}{101^{104}+1}=1\frac{100}{101^{104}+1}\)
Vì \(\frac{100}{101^{103}+1}>\frac{100}{101^{104}+1}\Rightarrow1+\frac{100}{101^{103}+1}>1+\frac{100}{101^{104}+1}\Rightarrow101M>101N\)
=> M > N
Ta có: M =\(\frac{101^{102}+1}{101^{103}+1}=\frac{101^{103}+101}{101^{104}+101}=\frac{101^{103}+1+100}{101^{104}+1+100}\)
Mà : N = \(\frac{101^{103}+1}{101^{104}+1}\)< M = \(\frac{101^{103}+1+100}{101^{104}+1+100}\)
\(\Rightarrow N< M\)
a, Xét 2010 . 2010 = (2009+1).2010
= 2009.2010 +2010
= (2009.2010+2009)+1
= 2009.(2010+1)+1
= 2009.2011+1
>= 2009.2010
=> 2010/2009 > 2011/2010
Tk mk nha
a, \(\frac{2010}{2009}\)và \(\frac{2011}{2010}\)
Ta có:
2010.2010 = ( 2009 + 1 ) . 2010
= 2009 . 2010 + 2010
= ( 2009 . 2010 + 2019 ) + 1
= 2019 . ( 2010 + 1 ) + 1
= 2019 . 2011 + 1
\(\Rightarrow\)\(\frac{2010}{2009}>\frac{2011}{2010}\)
b, \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...........+\frac{1}{200}\)và 1
Ta có:
\(\frac{1}{101}< 1;\frac{1}{102}< 1;\frac{1}{103}< 1;........;\frac{1}{200}< 1\)
\(\Rightarrow\)\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+.............+\frac{1}{200}< 1\)
Ta có :
\(N=\frac{101^{103}+1}{101^{104}+1}< 1=\frac{101^{103}+1+100}{101^{104}+1+100}=\frac{101^{103}+101}{101^{104}+101}=\frac{101\left(101^{102}+1\right)}{101\left(101^{103}+1\right)}=\frac{101^{102}+1}{101^{103}+1}=M\)
Vậy\(N< M\)
A = \(\frac{1}{101^2}+\frac{1}{102^2}+\frac{1}{103^2}+\frac{1}{104^2}+\frac{1}{105^2}\)< \(\frac{1}{100.101}+\frac{1}{101.102}+\frac{1}{102.103}+\frac{1}{103.104}+\frac{1}{104.105}\) =\(\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+\frac{1}{102}-\frac{1}{103}+\frac{1}{103}-\frac{1}{104}+\frac{1}{104}-\frac{1}{105}\)
= \(\frac{1}{100}-\frac{1}{105}=\frac{1}{2100}\)= \(\frac{1}{2^2.3.5^2.7}\)= B
Vậy A < B
\(A<\frac{1}{100.101}+\frac{1}{101.102}+\frac{1}{102.103}+\frac{1}{103.104}+\frac{1}{104.105}=\frac{1}{100}-\frac{1}{105}=\frac{1}{2100}\)
B = 1/2100
=> A< B