Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có A < \(\frac{2}{3^2-1^2}+\frac{2}{5^2-1^2}+...+\frac{2}{2019^2-1^2}\)
Tới đây ở mẫu số ta có công thức :
a2 - b2 = a2 - ab + ab - b2 = a(a - b) + b(a - b) = (a + b)(a - b)
<=> \(A< \frac{2}{\left(3-1\right)\left(3+1\right)}+\frac{2}{\left(5-1\right)\left(5+1\right)}+....+\frac{2}{\left(2019-1\right)\left(2019+1\right)}\)
\(=\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{2018.2020}=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2018}-\frac{1}{2020}\)
\(=\frac{1}{2}-\frac{1}{2020}=\frac{1009}{2020}< \frac{2019}{2020}=B\)
=> A < B
ta có :
a = \(\left(2^3\right)^{21}:2^{28}=2^{63}:2^{28}=2^{35}=2^{7.5}=\left(2^5\right)^7=32^7\)
b = \(\frac{6^{21}}{2^{21}}=\frac{\left(2.3\right)^{21}}{2^{21}}=\frac{2^{21}.3^{21}}{2^{21}}=3^{21}=3^{7.3}=\left(3^3\right)^7=27^7\)
vì 32 > 27 nên 327>277
Vậy a > b
a=(23)21 :228=263:228=235
b=321
a:b=235:321=221x214:321=2/321x214=2/314x2/37x214=4/314x2/37=4/37x4/37x2/37=27x4/37>1
Vậy a>b
A= 30+31+32+33+...+32012
=>3A=31+32+33+...+32013
=>3A-A=31+32+33+...+32013-30-31-32-33-...-32012
=>2A=32013-30
=>2A=32013-1
=>A=(32013-1):2<B
vậy A<B
Ta có:A=30+31+32+33+...+32012
2A=31+32+33+34+...+32013
2A-A=32013-1
A=32013-1 mà B=32013
\(\Rightarrow\)A<B
Ta có:
\(A=2^0+2^1+2^2+...+2^{40}\)
\(\Rightarrow2A=2^1+2^2+2^3+...+2^{41}\)
\(\Rightarrow2A-A=\left(2^1+2^2+2^3+...+2^{41}\right)-\left(2^0+2^1+...+2^{40}\right)\)
\(\Rightarrow A=2^{41}-2^0\)
\(\Rightarrow A=2^{41}-1\)
Vì \(2^{41}-1< 2^{41}\) nên A < B
Vậy A < B
\(8A=\frac{8^{19}+8}{8^{19}+1}=1+\frac{7}{8^{19}+1}\)
\(8B=\frac{8^{24}+8}{8^{24}+1}=1+\frac{7}{8^{24}+1}\)
\(\text{Vì }\frac{7}{8^{19}+1}>\frac{7}{8^{24}+1}\)
\(\Rightarrow8A>8B\)
\(\Rightarrow A>B\)
\(\text{Câu B làm tương tự nhé}\)