Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(B=\frac{19^{31}+5}{19^{32}+5}< \frac{19^{31}+5+90}{19^{32}+5+90}=\frac{19^{31}+95}{19^{32}+95}=\frac{19\left(19^{30}+5\right)}{19\left(19^{31}+5\right)}=\frac{19^{30}+5}{19^{31}+5}=A\)
b, Ta có: \(\frac{1}{A}=\frac{2^{20}-3}{2^{18}-3}=\frac{2^2.\left(2^{18}-3\right)+9}{2^{18}-3}=4+\frac{9}{2^{18}-3}\)
\(\frac{1}{B}=\frac{2^{22}-3}{2^{20}-3}=\frac{2^2\left(2^{20}-3\right)+9}{2^{20}-3}=4+\frac{9}{2^{20}-3}\)
Vì \(\frac{9}{2^{18}-3}>\frac{9}{2^{20}-3}\)\(\Rightarrow\frac{1}{A}>\frac{1}{B}\Rightarrow A< B\)
c, Câu hỏi của truong nguyen kim
Mình chỉ hướng dẫn bạn thôi nhé!
1. Nhân M vs 10 và N vs 10
2.Tách 10M thành 1 + ... và N cũng vậy.
3.So sánh.
Vậy nhé!
CHÚ Ý: bài toán sau: với \(\frac{a}{b}< 1,\)\(\frac{a}{b}< \frac{a+m}{b+m}\)
\(\frac{19^{31}+5}{19^{32}+5}< \frac{19^{31}+5+14}{19^{32}+5+14}=\frac{19^{31}+19}{19^{32}+19}< \frac{19\left(19^{30}+1\right)}{19\left(19^{31}+1\right)}< \frac{19^{30}+1+4}{19^{31}+1+4}=\frac{19^{30}+5}{19^{31}+5}\)
\(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}=\frac{1+5\left(1 +5+5^2+...+5^8\right)}{1+5+5^2+...+5^8}=5+\frac{1}{1+5+5^2+...+5^8} \)
\(B=\frac{1+3+3^2+....+3^9}{1+3+3^2+....+3^8}=\frac{1+3\left(1+3+3^2+....+3^8\right)}{1+3+3^2+....+3^8}=3+\frac{1}{1+3+3^2+....+3^8}\)
\(=5+\frac{1}{1+3+3^2+....+3^8}-2\)
Có: \(\frac{1}{1+5+5^2+...+5^8}>0\) và \(\frac{1}{1+3+3^2+....+3^8}-2< 0\)
\(\Rightarrow A>B\)
Ta có :
\(A=1+5+5^2+...+5^{32}\)
\(A=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{30}+5^{31}+5^{32}\right)\)
\(A=31+5^3\left(1+5+5^2\right)+...+5^{30}\left(1+5+5^2\right)\)
\(A=31+31.5^3+...+31.5^{30}\)
\(A=31\left(1+5^3+...+5^{30}\right)\) chia hết cho 31
Vậy \(A\) chia hết cho 31
\(a)\) Ta có :
\(\frac{a}{b}< \frac{a+c}{b+c}\)
\(\Leftrightarrow\)\(a\left(b+c\right)< b\left(a+c\right)\)
\(\Leftrightarrow\)\(ab+ac< ab+bc\)
\(\Leftrightarrow\)\(ac< bc\)
\(\Leftrightarrow\)\(a< b\)
Mà \(a< b\) \(\Rightarrow\) \(\frac{a}{b}< 1\)
Vậy ...
Xét B = \(\frac{19^{31}+5}{19^{32}+5}< \frac{19^{31}+5+14}{19^{32}+5+14}=\frac{19^{31}.19}{19^{32}.19}=\frac{19\left(19^{30}+1\right)}{19\left(19^{31}+1\right)}=\frac{19^{30}+1}{19^{31}+1}< \frac{19^{30}+5}{19^{31}+5}=A\)Vậy A > B
xét hieeij A - B chưa làm thử đi nó mà dương thì A > B và ngược lại