Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có\(A=1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}\right)\)\(>1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)+4\times\frac{1}{8}+4\times\frac{1}{12}+4\times\frac{1}{16}\)
\(=1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\)
\(=1+2\times\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)\)
\(>1+2\times\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\right)=1+2=3=B\)
\(\Rightarrow A>B\)
A=1+3+5+7+...+2015
Tổng trên có các số hạng là:(2015-1):2+1=1008
Kết quả của tổng trên là: (2015+1).1008:2=1016064
A = 1 + 3 + 5 + 7 + ... + 2015
Tổng A có số số hạng là:
(2015 - 1) : 2 + 1 = 1008 (số hạng)
Kết quả của tổng A là:
(1 + 2015) x 1008 : 2 = 1016064
Đáp số: 1016064
a)ta có : 2017/2018 = (2018 - 1) / 2018 = 2018/2018 - 1/2018 = 1 - 1/2018
Lại có : 9/10 = (10-1)/10 = 10/10-1/10 = 1-1/10
Vì 2018>10 => 1/2018 < 1/10
=> 1-1/2018 > 1-1/10
=> 2017/2018 > 9/10
Vậy 2017/2018 > 9/10
b) ta có : 8/5 = (5+3)/5 = 5/5 + 3/5 = 1 + 3/5
lại có : 2017/2014 = (2014+3)/2014 = 2014/2014 + 3/2014 = 1 + 3/2014
vì 5<2014 => 3/5 > 3/2014 => 1+ 3/5 > 1+ 3/2014
=> 8/5 > 2017/2014
vậy...
đó .bạn dựa vào đó làm mấy câu sau nha.Chúc bạn học giỏi.nếu bạn cần thì mk sẽ giải hết.
\(A=1+\frac{1}{2}+...+\frac{1}{16}\)
= \(1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+...+\frac{1}{8}\right)+\left(\frac{1}{9}+...+\frac{1}{12}\right)+\left(\frac{1}{13}+...+\frac{1}{16}\right)\)
> \(1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)+4\times\frac{1}{8}+4\times\frac{1}{12}+4\times\frac{1}{16}\)
=\(1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\)
=\(1+2\times\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)\)
= \(1+2\times\frac{13}{12}\)
= \(1+\frac{13}{6}\)
= \(1+2+\frac{1}{6}\)
= \(3+\frac{1}{6}\)>\(3\)
=> \(A>3+\frac{1}{6}>3\)
=> \(A>3+\frac{1}{6}>B\)
=> \(A>B\)
Vì \(\frac{1}{33}>\frac{1}{34}>\frac{1}{35}>\frac{1}{36}\)
\(\Rightarrow M>\frac{1}{36}+\frac{1}{36}+\frac{1}{36}+\frac{1}{36}\)\(\)
\(\Rightarrow M>\frac{4}{36}=\frac{1}{9}\)
Mà \(\frac{1}{9}>\frac{1}{10}\)
\(\Rightarrow\)\(M>\frac{1}{9}>\frac{1}{10}\)
Vậy : M > N
a; Cách một:
\(\dfrac{2}{9}\) = \(\dfrac{2\times2}{9\times2}\) = \(\dfrac{4}{18}\) < \(\dfrac{4}{10}\) Vậy \(\dfrac{2}{9}\) < \(\dfrac{4}{10}\)
\(\dfrac{4}{9}\) = \(\dfrac{4\times3}{9\times3}\) = \(\dfrac{12}{27}\); \(\dfrac{6}{10}\) = \(\dfrac{6\times2}{10\times2}\) = \(\dfrac{12}{20}\)
Vì \(\dfrac{12}{27}\) < \(\dfrac{12}{20}\) vậy \(\dfrac{4}{9}\) < \(\dfrac{12}{20}\)
\(\dfrac{3}{8}\) = \(\dfrac{3\times4}{8\times4}\) = \(\dfrac{12}{24}\); \(\dfrac{4}{7}\) = \(\dfrac{4\times3}{7\times3}\) = \(\dfrac{12}{21}\)
Vậy \(\dfrac{3}{8}\) < \(\dfrac{4}{7}\)
\(\dfrac{5}{9}\) = \(\dfrac{5\times7}{9\times7}\) = \(\dfrac{35}{63}\); \(\dfrac{7}{10}\) = \(\dfrac{7\times5}{10\times5}\) = \(\dfrac{35}{50}\)
Vì \(\dfrac{35}{63}\) < \(\dfrac{35}{50}\) vậy \(\dfrac{5}{9}\) < \(\dfrac{7}{10}\)
Cách hai:
a; \(\dfrac{2}{9}\) = \(\dfrac{2\times10}{9\times10}\) = \(\dfrac{20}{90}\); \(\dfrac{4}{10}\) = \(\dfrac{4\times9}{10\times9}\) = \(\dfrac{36}{90}\)
Vì \(\dfrac{20}{90}\) < \(\dfrac{36}{90}\) vậy \(\dfrac{2}{9}\) < \(\dfrac{4}{10}\)
b; \(\dfrac{4}{9}\) = \(\dfrac{4\times10}{9\times10}\) = \(\dfrac{40}{90}\); \(\dfrac{6}{10}\) = \(\dfrac{6\times9}{10\times9}\) = \(\dfrac{54}{90}\)
Vì \(\dfrac{40}{90}\) < \(\dfrac{54}{90}\) vậy \(\dfrac{4}{9}\) < \(\dfrac{6}{10}\)
c; \(\dfrac{3}{8}\) = \(\dfrac{3\times7}{8\times7}\) = \(\dfrac{21}{56}\); \(\dfrac{4}{7}\) = \(\dfrac{4\times8}{7\times8}\) = \(\dfrac{32}{56}\)
Vì \(\dfrac{21}{56}\) < \(\dfrac{32}{56}\) vậy \(\dfrac{3}{8}\) < \(\dfrac{4}{7}\)
d; \(\dfrac{5}{9}\) = \(\dfrac{5\times10}{9\times10}\) = \(\dfrac{50}{90}\); \(\dfrac{7}{10}\) = \(\dfrac{7\times9}{10\times9}\) = \(\dfrac{63}{90}\)
Vì \(\dfrac{50}{90}\) < \(\dfrac{63}{90}\) vậy \(\dfrac{5}{9}\) < \(\dfrac{7}{10}\)