K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A=2(1+3+5+...+97+99)

Số số lẻ trong khoảng từ 1 đến 99 là (99-1):2+1=50(số)

=>Tổng của các số lẻ từ 1 đến 99 là (99+1)*50/2=50*50=2500

=>A=2*2500=5000

B=2(2+4+6+...+98+100)

Số số chẵn trong khoảng từ 2 đến 100 là

(100-2):2+1=50(số)

=>Tổng của các số lẻ từ 2 đến 100 là (100+2)*50/2=50*51=2550

=>B=2*2550=5100

=>A<B

22 tháng 3 2017

A=5000

B=5900

k mình nha

22 tháng 3 2017

bạn có thể viết cách làm ko

10 tháng 10 2023

a) \(3\cdot24^{10}=3\cdot6^{10}\cdot4^{10}=3\cdot3^{10}\cdot2^{10}\cdot2^{20}\)

\(=3^{11}\cdot2^{30}\)

\(4^{30}=2^{30}\cdot2^{30}=2^{30}\cdot4^{15}\)

Ta có \(4^{15}>3^{15}>3^{11}\) nên \(4^{15}>3^{11}\)

Khi đó \(4^{15}\cdot2^{30}>3^{11}\cdot2^{30}\) hay \(4^{30}>3\cdot24^{10}\)

b) \(\dfrac{3}{1^2\cdot2^2}+\dfrac{5}{2^2\cdot3^2}+...+\dfrac{19}{9^2\cdot10^2}\)

\(=\dfrac{3}{1\cdot4}+\dfrac{5}{4\cdot9}+...+\dfrac{19}{81\cdot100}\)

\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+...+\dfrac{1}{81}-\dfrac{1}{100}\)

\(=1-\dfrac{1}{100}=\dfrac{99}{100}< 1\)

Vậy dãy trên nhỏ hơn 1

10 tháng 10 2023

a/

\(4^{30}=\left(2^2\right)^{30}=2^{60}=2^{30}.2^{30}=\left(2^2\right)^{15}.2^{30}=4^{15}.2^{30}\)

\(3.24^{10}=3.3^{10}.\left(2^3\right)^{10}=3^{11}.2^{30}< 3^{15}.2^{30}\)

\(\Rightarrow4^{30}=4^{15}.2^{30}>3^{15}.2^{30}>3^{11}.2^{30}=3.24^{10}\)

b/

\(=\dfrac{2^2-1^2}{1^2.2^2}+\dfrac{3^2-2^2}{2^2.3^2}+\dfrac{4^2-3^2}{3^2.4^2}+...+\dfrac{10^2-9^2}{9^2.10^2}=\)

\(=1-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+\dfrac{1}{3^2}-\dfrac{1}{4^2}+...+\dfrac{1}{9^2}-\dfrac{1}{10^2}=\)

\(=1-\dfrac{1}{10^2}< 1\)

 

26 tháng 2 2017

Ta có : A = 1.2 + 2.3 + 3.4 + ...... + 100.101

=> 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ...... + 100.101.102

=> 3A = 100.101.102

=> A = 100.101.102/3

=> A = 343400

28 tháng 2 2017

sai rồi

23 tháng 2 2017

Ta có :

A = 1.2+2.3+3.4+4.5+...+100.101

B = 1.3+2.4+3.5+4.6+....+100.102

=> B - A = ( 1.2+2.3+3.4+4.5+...+100.101) - (1.3+2.4+3.5+4.6+...+100.102)

=> B - A = 1.2+2.3+3.4+4.5+...+100.101-1.3-2.4-3.5-4.6-....-100.102

=> B - A = 1.2+(2.3-1.3)+(3.4-2.4)+(4.5-3.5)+...+(100.101-99.101)-100.102

=> B - A = 2+3+4+5+...+101-10200

=> B - A = (2+101)+(3+100)+...+(51+52)-10200

=> B - A = 103+103+103+....+103-10200 ( 50 SỐ 103 )

=> B - A = 103.50-10200

=> B - A = 5150-10200

=> B - A = -5050

24 tháng 2 2017

Cách làm đúng nhưng bạn lấy nhầm A-B thay vì B-A rồi, kết quả là 5050 mới đúng

17 tháng 11 2018

a/ \(\dfrac{x+1}{100}+\dfrac{x+2}{99}=\dfrac{x+3}{98}+\dfrac{x+4}{97}\)

\(\Leftrightarrow\left(\dfrac{x+1}{100}+1\right)+\left(\dfrac{x+2}{99}+1\right)=\left(\dfrac{x+3}{98}+1\right)+\left(\dfrac{x+4}{97}+1\right)\)

\(\Leftrightarrow\dfrac{x+101}{100}+\dfrac{x+101}{99}=\dfrac{x+101}{98}+\dfrac{x+101}{97}\)

\(\Leftrightarrow\dfrac{x+101}{100}+\dfrac{x+101}{99}-\dfrac{x+101}{98}-\dfrac{x+101}{97}=0\)

\(\Leftrightarrow\left(x+101\right)\left(\dfrac{1}{100}+\dfrac{1}{99}-\dfrac{1}{98}-\dfrac{1}{97}\right)=0\)

\(\dfrac{1}{100}+\dfrac{1}{99}-\dfrac{1}{98}-\dfrac{1}{97}\ne0\)

\(\Leftrightarrow x+101=0\)

\(\Leftrightarrow x=-101\)

Vậy...

b/ Đặt :

\(A=\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+.........+\dfrac{19}{9^2.10^2}\)

\(=\dfrac{2^2-1^2}{1^2.2^2}+\dfrac{3^2-2^2}{2^2.3^2}+....+\dfrac{10^2-9^2}{9^2.10^2}\)

\(=\dfrac{2^2}{1^2.2^2}-\dfrac{1^2}{1^2.2^2}+\dfrac{3^2}{2^2.3^2}-\dfrac{2^2}{2^2.3^2}+....+\dfrac{10^2}{9^2.10^2}-\dfrac{9^2}{9^2.10^2}\)

\(=1-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+...+\dfrac{1}{9^2}-\dfrac{1}{10^2}\)

\(=1-\dfrac{1}{10^2}< 1\)

\(\Leftrightarrow A< 1\left(đpcm\right)\)

Vậy...

c/ Với mọi x ta có :

\(\left|x-5\right|=\left|5-x\right|\)

\(\Leftrightarrow\left|x-10\right|+\left|x-5\right|=\left|x-10\right|+\left|5-x\right|\)

\(\Leftrightarrow A=\left|x-10\right|+\left|5-x\right|\)

\(\Leftrightarrow A\ge\left|x-10+5-x\right|\)

\(\Leftrightarrow A\ge5\)

Dấu "=" xảy ra

\(\Leftrightarrow\left(x-10\right)\left(5-x\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-10\ge0\\5-x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-10\le0\\5-x\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge10\\5\ge x\end{matrix}\right.\\\left\{{}\begin{matrix}x\le10\\5\le x\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\in\varnothing\\5\le x\le10\end{matrix}\right.\)

Vậy..

17 tháng 10 2021

đcmcm

 

23 tháng 2 2017

Ta có 3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+....+100.101.102-99.100.101

\(\Rightarrow\)3A=100.101.102

\(\Rightarrow\)A=343400

        B=1.2+1+2.3+1+3.4+1+...+100.101+100

\(\Rightarrow\)B=1.2+2.3+3.4+...+100.101+[1+2+3+..+100]

     Mặt khác 1.2+2.3+3.4+4.5+...+100.101=A

\(\Rightarrow\)B=343400+101.100:2=348450